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Enhancer identification using machine learning enables 
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Motivation
qAntisense oligonucleotides (ASOs) that 

specifically target functional enhancers and 
their associated RNAs are being pursued to 
modulate disease-associated gene 
expression for a range of therapeutic 
indications. 

qHowever, identifying functional enhancers 
and linking them to target genes remains a 
major challenge. 

Approach

Results
EPIC outperforms ABC model in predicting 
enhancer-promoter pairs (holdout test data)

Conclusions
q Our EPIC model enables accurate cell-type-

specific prediction of functional E-P 
interactions using epigenomic data. 

q EPIC model outperforms an established 
method in predicting E-P interactions. 

q Applying EPIC model to diverse human cell 
types may help discover disease-causing 
genes and enable the development of novel 
therapeutics targeting enhancers of 
disease-related genes. 

Our enhancer-promoter interaction characterization 
(EPIC) model is a machine learning model for 
predicting functional enhancer-promoter (E-P) pairs. 

Model AUPR AUROC
EPIC-full 0.613 0.918
EPIC-basic 0.551 0.912
ABC 0.451 0.885

• The area under receiver operating characteristic 
(AUROC) curve of EPIC-full is significantly higher than 
that of ABC (p = 7.6e-11) (DeLong et al., 1988, 
Biometrics, 44:837-45).

• The AUROC of EPIC-full is significantly higher than that 
of EPIC-basic (p = 0.01), demonstrating the value of 
feature engineering.

Engineered 
features 
ranked 
highest in 
feature 
importance

ABC = (ATAC.Enh.500bp * H3K27ac.Enh.500bp)1/2 * HiC.5kb 
(Fulco et al., 2019, Nat. Genet., 51:1664-9) 

K562 enhancer epigenomic 
and chromatin interaction 

features

K562 CRISPR-based 
enhancer perturbation 

screening

EPIC: 
a machine 

learning model

Infer

Enhancer 1 – Gene A:  Yes
Enhancer 2 – Gene A:  No
Enhancer 3 – Gene B:  Yes

…

(Gasperini et al., 2019, Cell, 176:377-90;
 Xie et al., 2019, Cell Reports, 29: 2570-78) 

Basic features
• HiChIP.AnchorSize: AnchorSize = 5kb, 10kb, 15kb, or 20kb (n=4)
• Assay.Position.WindowSize, where Assay=ATAC, H3K27ac, 

H3K4me1, H3K4me3, EP300, CTCF, or Input ChIP;  Position = Enh 
or TSS; WindowSize = 300bp, 500bp, 1kb, 2kb, or 4kb (n=7*2*5=70)

• Genomic distance (n=1)

Feature engineering
APMI = (ATAC.Enh.1kb * EP300.Enh.1kb * H3K4me1.Enh.4kb)1/3 * 
HiChIP.5kb

Based on APMI, we engineered a new set of features for quantifying 
the relative contribution of an enhancer e to a gene g from the gene 
perspective or enhancer perspective:

where j indexes all the enhancers 
connected to gene g.

where k indexes all the genes 
connected to enhancer e.

In addition, we combined these features to form new features.

fracGene!" =
𝐴𝑃𝑀𝐼!"
∑#𝐴𝑃𝑀𝐼#"

fracEnh!" =
𝐴𝑃𝑀𝐼!"
∑$𝐴𝑃𝑀𝐼!$

fracGmE!" = fracGene!" ∗ 	 fracEnh!"

fracGpE!" = fracGene!" +	 fracEnh!"

apmiGene!" = fracGene!" ∗ 	𝐴𝑃𝑀𝐼!"

apmiEnh!" = fracEnh!" ∗ 	𝐴𝑃𝑀𝐼!"

apmiGmE!" = fracGmE!" ∗ 	𝐴𝑃𝑀𝐼!"

apmiGpE!" = fracGpE!" ∗ 	𝐴𝑃𝑀𝐼!"

Machine learning model
• Random forest classification model trained on K562 data

• Five-fold cross-validation

• Genetic algorithm for feature selection
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EPIC outperforms ABC model when 
evaluated with experimental validation 
in a new cell type
• We conducted a large scale single-cell CRISPRi-based 

enhancer perturbation screen in HepG2 cells.
• The significant E-P pairs derived from the screen were 

used to evaluate EPIC and ABC scores.

Developing ASOs targeting a regulatory RNA 
of the human ornithine transcarbamylase 

(OTC) gene

1.25uM 2.5uM 5uM 10uM
0

2

4

6

CO-3783

171

371

4178

511A

Donor I
Donor II
Donor III
Donor IV

Re
la

tiv
e 

O
TC

 m
RN

A/
HK

 G
eo

m
ea

n

ASO targeting OTC enhancer RNA (eRNA) shows 
dose-dependent increase in OTC mRNA in 

hepatocytes from multiple donors

OTC eRNA-targeting ASO increases OTC mRNA 
and ureagenesis in human OTC-deficient 

hepatocytes

OTC-deficient hepatocytes: c.-106C>A variant (Allele ID 480410, late-onset OTC 
deficiency) - pathogenic (dbSNP: rs749748052) associated with 10-25% of normal OTC 
activity. OTC mRNA and urea levels determined after 6 days of ASO treatment (5 µM 
ASO). NTC = non-targeting control ASO

EPIC model was used to 
identify key OTC enhancer 

in hepatocytes

Decreased OTC 
expression results in 

an inadequate 
ammonia processing

OTC enhancer targeting by CRISPRa or CRISPRi 
changes OTC mRNA levels

CRISPRa CRISPRi
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Model AUPR AUROC
EPIC 0.625 0.910
ABC 0.455 0.861


