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Abstract 

Combinatorial patterns of epigenetic features reflect transcriptional states and functions of genomic regions. While many epigenetic features 
ha v e correlated relationships, most existing data normalization approaches analyze each feature independently. Such strategies may distort 
relationships between functionally correlated epigenetic features and hinder biological interpretation. We present a no v el approach named 
JMnorm that simultaneously normalizes multiple epigenetic features across cell types, species, and e xperimental conditions b y le v eraging 
information from partially correlated epigenetic f eatures. W e demonstrate that JMnorm-normalized data can better preserve cross-epigenetic- 
feature correlations across different cell types and enhance consistency between biological replicates than data normalized by other methods. 
A dditionally, w e sho w that JMnorm-normaliz ed data can consistently impro v e the perf ormance of v arious do wnstream analy ses, which include 
candidate cis- regulatory element clustering , cross-cell-t ype gene expression prediction, detection of transcription factor binding and changes 
upon perturbations. These findings suggest that JMnorm effectively minimizes technical noise while preserving true biologically significant 
relationships between epigenetic datasets. We anticipate that JMnorm will enhance integrative and comparative epigenomics. 
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pigenetic features, including DNA accessibility and post-
ranslational histone modifications, are thought to accurately
eflect transcriptional states and help infer mechanistic in-
ights about the regulation of gene expression in cell-type-
pecific contexts. Development of high-throughput sequenc-
ng techniques for genome interrogation led to the genera-
ion of hundreds of epigenetic datasets in different cell types
nd under various physiological conditions. Many large-scale
ata consortiums, such as the Encyclopedia of DNA Ele-
ents ( ENCODE ) and the ValIdated Systematic IntegratiON
f hematopoietic epigenomes ( VISION ) projects, have utilized
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epigenetic features to identify candidate cis- regulatory ele-
ments ( cCREs ) ( 1–4 ) . Follow-up studies characterized func-
tional dynamics of epigenetic features across different cell
types and conditions to elucidate their effects on transcrip-
tional regulation ( 5–10 ) . Increased sensitivity of the high-
throughput sequencing methods results in amplified techni-
cal noise that can hinder the ability to extract biologically
meaningful information. Therefore, to precisely quantify and
compare epigenetic features across cell types, species, and ex-
perimental conditions, it is essential to develop robust epige-
nomic data normalization techniques to mitigate technical
biases ( 11 ) . 
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Many normalization methods have been developed for
comparative analyses of high-throughput sequencing data
( Supplementary Table 1 ). The two most widely used and eas-
ily implementable normalization methods are total library
size normalization (TSnorm) and quantile normalization (QT-
norm). TSnorm scales the signal of datasets to be compared
based on the ratio of their total library sizes ( 12 ,13 ), whereas
QTnorm transforms and equalizes signal distribution of each
dataset relative to a reference distribution ( 14 ). The advan-
tage of TSnorm is in its simplicity as it assumes that the only
source of technical variation between datasets lies in differ-
ences in their sequencing read depths. QTnorm, on the other
hand, can effectively remove complex technical biases by as-
suming different datasets share not only the same global mean
but also the same global distribution. These assumptions hold
true for certain types of high-throughput sequencing data such
as bulk cell RNA-seq, where the majority of true biological
signals are similar in different data sets. However, they are
likely incorrect for epigenetic datasets with substantial vari-
ability in the number of peaks and signal intensities across
different cell types ( 1 ,2 ) or experimental conditions ( 15 ), es-
pecially for epigenetic features with prominent signals at the
cell-type-specific enhancers ( 1 ,2 ). Consequently, in compara-
tive analyses of data with unequal number of biological peaks
between cell types or conditions, both normalization meth-
ods tend to generate false positive or negative peak signals.
Moreover, when comparing datasets produced under differ-
ent treatment conditions inducing global epigenomic effects,
QTnorm often distorts normalized signals relative to the true
signals. 

Other more specialized normalization methods, for exam-
ple MAnorm and S3norm and their latest versions ( 16–19 ),
are more adept for analysis of epigenetic datasets. These meth-
ods aim to eliminate biases due to differences in both sequenc-
ing depths and signal-to-noise ratios, which often arise from
factors such as variations in antibody efficiency during ChIP-
seq experiments ( 20 ). They utilize information from shared
peak regions without / with common background regions and
assume that the true signals in these regions remain consis-
tent across different datasets and thereby, can serve as reli-
able anchors for data normalization. Similarly, a variant of
the TSnorm method, referred to as TSnorm_cbg in this pa-
per, computes a scaling factor using information from com-
mon background regions between two samples. It leverages
the same concept as the normalization of ChIP-seq with con-
trol (NCIS) ( 21 ), which was specifically designed to address
the challenge of normalizing global differences between ChIP
and control datasets. However, the simple scaling factors or
transformation models employed by these methods might
not be adequate for addressing all technical biases, especially
when they exhibit complex patterns, which are often observed
in studies integrating datasets from multiple sources ( 3 ,22 ).
Lastly, some methods can effectively model diverse signal dis-
tributions of epigenetic data by converting signals into ranks.
However, these methods result in a loss of quantitative infor-
mation ( 23 ). 

Another significant drawback of existing approaches is
that they analyze each epigenetic feature independently. These
approaches may distort relationships between functionally
correlated epigenetic features and hinder biological interpre-
tation. Combinatorial patterns of multiple epigenetic fea-
tures, known as epigenetic states, have been widely used
for functional annotation of cCREs in different cell types,
species and experimental conditions ( 3 ,24–29 ). Recent studies 
have shown that, while regulatory regions with specific epige- 
netic states may vary based on cellular and experimental con- 
texts, cross-feature combinatorial patterns remain relatively 
conserved ( 4 ). Therefore, a normalization method that utilizes 
the information from functionally correlated epigenetic fea- 
tures could yield more accurate and biologically relevant post- 
normalization signals, enabling more meaningful comparison 

and integration of epigenetic data across conditions. 
Here, we present a novel approach called J oint M ulti- 

feature norm alization (JMnorm) for simultaneous normaliza- 
tion of multiple epigenetic features across cell types, species,
and experimental conditions by leveraging information from 

functionally correlated features. We demonstrate JMnorm’s 
superior performance in preserving cross-feature correlations 
and improving consistency between biological replicates, as 
well as its better versatility and utility for various genomic 
applications relative to other methods. Additionally, JMnorm 

can increase consistency between normalized epigenetic fea- 
tures and orthogonal datasets, which we robustly validated 

across diverse types of epigenetic features, including transcrip- 
tion factor (TF) binding ChIP-seq and DNase-seq data. 

Materials and methods 

Data collection and preprocessing 

We obtained epigenetic datasets primarily from two 

databases: the VISION ( 3 , 4 , 22 , 30–32 ) and the EpiMAP 

repository ( 33 ). For VISION datasets, we downloaded big- 
Wig files containing average read counts for seven chromatin 

features (H3K4me3, H3K4me1, H3K27ac, H3K36me3,
H3K27me3, H3K9me3, A T AC-seq) from 9 human and 

16 mouse hematopoietic cell types. For EpiMAP datasets,
we downloaded bigWig files containing average −log 10 ( P - 
value) signal tracks for seven chromatin features (H3K4me3,
H3K4me1, H3K27ac, H3K36me3, H3K27me3, CTCF 

ChIP-seq and DNase-seq) from 24 human cell type groups.
Since EpiMAP signal tracks were originally mapped to 

the hg19 reference genome, we used the CrossMap pack- 
age ( 34 ) with default settings to lift over these files to the 
hg38 reference genome. All other datasets used in this 
study were mapped to hg38. RNA-seq data for different 
cell types were also downloaded from the VISION project 
(log2TPM, quantile normalized) and the EpiMAP reposi- 
tory (log2FPKM, quantile normalized). The topologically 
associating domains (TAD) boundaries were downloaded 

from the VISION project website under the ‘Hi-C’ tab 

( https:// main.genome-browser.bx.psu.edu/ cgi-bin/ hgTracks ), 
and YY1 peaks (bed format) were downloaded from the 
Cistrome DB ( http:// cistrome.org/ db/ #/ ) ( 35 ,36 ). The links 
to the downloaded files and the Cistrome DB sample ID 

list of the downloaded YY1 peak files are provided in 

Supplementary Table 1 . The DNase-seq data to obtain 

the number of DNase I Hypersensitive Sites (DHSs) in 

different cell types were downloaded from the Meule- 
man 2020 study ( https:// static-content.springer.com/ esm/ 
art%3A10.1038%2Fs41586- 020- 2559- 3/MediaObjects/ 
41586 _ 2020 _ 2559 _ MOESM3 _ ESM.xlsx ) ( 37 ). 

To prepare data for normalization and downstream anal- 
yses, we first acquired an epigenomic signal matrix for each 

biological replicate of each cell type, denoted as X r, ct , where 
r is the replicate id and ct is the cell type. Each X r, ct matrix 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://main.genome-browser.bx.psu.edu/cgi-bin/hgTracks
http://cistrome.org/db/#/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-2559-3/MediaObjects/41586_2020_2559_MOESM3_ESM.xlsx
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s a n -by- m 2-dimensional matrix, where n is the number of
CREs and m is the number of epigenetic features. We note
hat not all cell types had datasets for all epigenetic features.
he details and links to all available datasets in both species
re provided in Supplementary Table 1 . In the matrix X r, ct ,
ach element x i, j represents the average signal over the ge-
omic region of i-th cCRE derived from the signal track of
-th epigenetic feature for the replicate- r of the cell type -ct .
hese epigenomic signal matrices ( X r, ct matrics) were gener-
ted using the bigWigAverageOverBed script from the UCSC
enome Browser utilities ( 38 ) on the bigwig files of the cor-

esponding replicates. In this study, we utilized the ENCODE
CRE regions ( 2 ) for epigenomic signal matrices, with cCRE
engths ranging from 150 to 350 bp. We used this cCRE list
ecause it is one of the most comprehensive cCRE lists de-
ived from uniformly preprocessed epigenomic datasets across
 broad range of cell types. We also evaluated the normaliza-
ion methods using an alternative strategy, which uses consec-
tive bins of fixed length (100 bp) along the genome. 
In most of the downstream analyses, we averaged the signal
atrices from all biological replicates of the same cell type (all
 r,ct matrices of cell type- ct) to produce the epigenomic signal
atrix for each cell type, denoted as X ct , where X ct is still a
 -by- m matrix. Each element x i, j represents the mean of i -th
CRE signals across all biological replicates for the j th epige-
etic feature of the cell type -ct . The only exception were the
nalyses performed for evaluation of signal consistency be-
ween replicates, where we kept the epigenomic signal matri-
es of distinct biological replicates separate and then normal-
zed them independently (see the ‘Evaluation of signal consis-
ency between biological replicates’ section). 

Subsequently, we generated a reference signal matrix by av-
raging the epigenomic signal matrices of all cell types (each
ell type has a n -by- m matrix X ct ) and used the resulting n -
y- m matrix, denoted as X re f , for all cell types to normalize
gainst. 

eneration of reference signal matrix 

o normalize data across multiple cell types, we used the av-
rage signal across all cell types as reference for all cell types
o normalize against. This is different from the strategy used
n the normalization step of our previous genome segmenta-
ion analyses ( 3 ,17 ), which aimed to enhance the sensitivity of
ost-normalization signal by using the sample with the high-
st FRiP score as reference. By utilizing average signal tracks
s the references in this study, the noise in individual datasets
as averaged out, leading to a cleaner reference for different

ell types to normalize against. Consequently, this reference
election strategy balances sensitivity and robustness, and en-
ances the performance of methods that are more sensitive to
ackground noise in the reference, such as QTnorm. For each
pigenetic feature, we first collected all datasets for that fea-
ure in all cell types, and then computed the average signals
t each cCRE region across these cell types. The average sig-
al vector for all cCREs was used as a reference signal vector
or the specific feature. This process was performed for all fea-
ures, and the resulting outputs were combined to generate the
 -by- m reference signal matrix, denoted as X re f . 
To improve the cross-feature comparability and inter-

retability, we further equalized sequencing depths and signal-
o-noise ratios of different features in the reference matrix
sing S3norm ( 17 ). Instead of using S3norm’s default mode,
which learns an exponential transformation model from com-
mon peak regions and common background regions of two
signal vectors, we employed its cross-feature normalization
mode. This mode leverages peak regions and background re-
gions of each signal vector to learn a transformation model.
The reason for this choice is that when normalizing two
signal vectors of different epigenetic features, the assump-
tion that common peak regions represent housekeeping epi-
genetic events with similar signal levels is not valid, particu-
larly for features with opposing functions such as H3K27ac
and H3K9me3. Specifically, we used the ratio between the top
mean signal of 99% quantile of cCREs and the overall mean
of all cCREs for each feature to learn the S3norm transfor-
mation model. After the normalization, the sequencing depth
and the signal-to-noise ratios are equalized across all features
in the reference matrix. This reference signal matrix is then
used as the reference signal matrix for all cell types to nor-
malize against in downstream analyses. 

The details about JMnorm 

JMnorm is designed to normalize the signal matrix of a target
cell type or condition, X tar , against a reference signal matrix,
X re f . When there are multiple cell types, each cell type is nor-
malized against the reference data independently. 

JMnorm consists of four key steps (Figure 1 ). In the 1st
step, it transforms the signal matrix into mutually orthogo-
nal principal component analysis (PCA) space to consolidate
correlated components across the signal vectors of different
epigenetic features into the same PCA dimension. To achieve
this, JMnorm learns a PCA transformation model from the
reference signal matrix and then applies it to transform the
target signal matrices. 

Specifically, given the reference signal matrix X re f of m epi-
genetic features at n cCRE regions, the PCA transformation
can be defined as: 

PC re f = X re f × V re f , 

where X re f represents the n -by- m reference signal matrix in
original signal space, PC re f is the n -by- m reference signal ma-
trix in PCA space, and V re f is a m -by- m rotation matrix that
is learned from the reference signal matrix by using singular
value decomposition method. 

PC tar = X tar × V re f , 

where X tar is the n -by- m target signal matrix in original sig-
nal space, PC tar represents the n -by- m target signal matrix in
PCA space. These scores are obtained by projecting the target
signal matrix into the PCA space defined using the reference
signal matrix by the V re f rotation matrix. This ensures that the
signal matrices of all target cell types can be transferred to the
same reference PCA spaces. Moreover, the PCA model cap-
tures the cross-feature correlation information from the ref-
erence signal matrix, which is used and preserved throughout
the subsequent steps. 

Previous studies have demonstrated that there are repro-
ducible combinatorial patterns across various chromatin fea-
tures in different cell types or species, similar to the epige-
netic states identified by various genome segmentation meth-
ods such as chromHMM ( 24 ), Segway ( 25 ) and IDEAS ( 26 ),
which play a role in transcriptional regulation. 

In the 2nd step, JMnorm leverages this prior knowledge by
first clustering the cCREs into distinct groups based on the

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
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reference signal matrix (reference clusters). Under the assump-
tion that these reference clusters capture the conserved cross-
feature patterns of distinct cCRE groups across different cell
types, each cCRE is assigned, based on the target signal ma-
trix, to one of the reference clusters. 

Specifically, the reference clusters are generated using K-
means clustering based on the reference signal matrix in PCA
space. The number of reference clusters (K) is automatically
determined by performing hierarchical clustering on a sub-
set of data (20 000 cCREs by default), followed by the Dy-
namicTreeCut method, which uses a branch cutting strat-
egy to identify clusters in a dendrogram based on its shape
(cutreeDynamic function with the following parameter set-
tings: method = ‘hybrid’ and deepSplit = 2) ( 39 ). The result-
ing number of DynamicTreeCut clusters is then utilized as the
K for K -means clustering on the reference signal matrix. The
values of K vary depending on the specific combination and
number of epigenetic features involved in the analysis. In our
analyses with seven epigenetic features, the K values ranged
from 39 to 40. 

C re f = Kmeans 
(
PC re f , K 

)
, 

where C re f is a vector of length n (where n is the number of
cCREs) that contains the K -means cluster labels for all cCREs.
Each K -means cluster is denoted as h : 

P C re f ,h = P C re f | C re f = h 

AverageP C re f , h = ColumnMean 

(
P C re f ,h 

)
, 

where PC re f ,h is a n re f ,h -by-m matrix derived from the subset
of the PC re f that corresponds to cCREs associated with the K-
means cluster h , n re f ,h is the number of reference cCREs that
belong to the K-means cluster h , and AveragePC re f , h is the av-
erage PCA vector for K-means cluster h that contains the col-
umn mean of the PC re f ,h matrix. The length of AveragePC re f , h
vector equals to the number of epigenetic features m . The
AveragePC re f , h is computed for all K clusters. After that, all
AveragePC re f , h vectors are consolidated and formed into a k-
by-m matrix named AveragePC re f . 

Next, the target PCA signal matrix is first normalized to the
reference PCA signal matrix using quantile normalization (ini-
tial QTnorm) to mitigate complex technical biases that could
result in incorrect cCRE assignments: 

P C tar,QT = QT norm 

(
P C tar , P C re f 

)
, 

where PC tar,QT represents the n -by- m PCA signal matrix after
initial round of QTnorm normalization, and QT norm () rep-
resents applying the QTnorm normalization method to PC tar ,
wherein each column of PC tar is adjusted to match the distri-
bution of its corresponding column in PC re f . 

A n -by- k pairwise Euclidean distance matrix Dist tar be-
tween the PC tar,QT matrix and the AveragePC re f matrix is then
computed. The element of Dist tar at ( i, j) is defined as: 

d i,h = 

√ ∑ 

m 

(
X tar,i,m 

− X AveRe f ,h,m 

)2 
, 

where X tar,i,m 

is the i th row of the PC tar,QT matrix, X AveRe f ,h,m
is the jth row of the AveragePC re f matrix, m is the number
of epigenetic features, d i,h represents the Euclidean distance
between the i th row ( i th cCRE) in target signal matrix and
the cluster center of h th K-means cluster in PCA space. 
Each cCRE in the target signal matrix is assigned to one 
of the reference clusters based on the smallest Euclidean dis- 
tance, and a vector C tar of length n (where n is the number 
of cCREs) that contains the cluster labels for all cCREs in 

the target signal matrix is generated. It is important to note 
that the initial QTnorm step might introduce noise at differ- 
ent PCA spaces in the data. However, since different principal 
components (PCs) are independent, and the noise is expected 

to randomly appear across different PCs for each cCRE, we 
reasoned that the majority of PCs would still contain accurate 
signals, enabling correct cCRE assignment. 

In the 3rd step, JMnorm normalizes the target signal matrix 

against the reference signal matrix within each K -means clus- 
ter in the PCA space (within-cluster QTnorm). This is achieved 

by using QTnorm to normalize each PC separately, removing 
both simple and complex technical biases that may be present 
in the target signal matrix. 

Specifically, for each K -means cluster h : 

P C re f ,h = P C re f | C re f = h 

P C tar,QT,h = P C tar,QT | C tar = h 

P C tar,JMnorm, h = QT norm 

(
P C tar,QT,h , P C re f ,h 

)
where PC re f ,h is a n re f ,h -by-m matrix derived from the subset 
of the PC re f that corresponds to cluster h , PC tar,QT,h is a n tar,h - 
by- m matrix derived from the subset of the PC tar,QT that cor- 
responds to cluster h , n re f ,h is the number of reference cCREs 
in the cluster h , n tar,h is the number of target cCREs in the 
cluster h , PC tar,JMnorm,h is the n tar,h -by-m target signal matrix 

after QTnorm normalization against reference signal matrix 

within cluster h , and QT norm () represents applying QTnorm 

normalization to PC tar,QT,h , wherein each column of PC tar,QT,h 
is adjusted to match the distribution of its corresponding col- 
umn in PC re f ,h . Here, we assumed that cCREs within the same 
cluster shared the same epigenetic state in both reference and 

target, and thus had the same signal distributions. However,
since the number of cCREs within each cluster are often dif- 
ferent between reference and target, they are likely to have dif- 
ferent global distributions. The cCRE clustering followed by 
within-cluster QTnorm is one of the key distinctions between 

JMnorm and traditional QTnorm. It effectively addresses the 
major limitation of QTnorm, which forces all cell types to 

have identical global signal distributions after normalization.
The PC tar,JMnorm, h for all K clusters is then computed. After 
that, all PC tar,JMnorm, h matrices are combined to generate the 
n -by- m PC tar,JMnorm 

matrix. 
In the 4th step, JMnorm reconstructs the normalized tar- 

get signal matrix in the original signal space. To accomplish 

this, a dot product is performed between the normalized target 
PCA signal matrix PC tar,JMnorm 

and the transposed PCA rota- 
tion matrix t( V re f ) learned from reference signal matrix in the 
first step: 

X tar, JMnorm 

= PC tar,JMnorm 

× t 
(
V re f 

)
, 

where X tar, JMnorm 

is the JMnorm-normalized target signal ma- 
trix in the original signal space, and t () represents the trans- 
pose operation. 

Quantification of the similarity of cross-feature 

correlations 

We assessed the ability of various methods to preserve and 
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ignal matrices to post-normalization signal matrices of target
ell types. Specifically, we calculated the cross-feature correla-
ion matrix for each post-normalization signal matrix of the
arget cell types and the original reference signal matrix. We
hen computed the mean squared error (MSE) between each
arget cell type’s correlation matrix and the reference corre-
ation matrix. Lower MSE values indicate the normalization
ethod can better preserve and transfer cross-feature corre-

ation information from the reference signal matrix to the
ost-normalization signal matrices of the target cell types. For
he cross-species normalization comparison, S3norm’s cross-
eature mode was employed for S3norm normalization that
nly uses the peak regions and background regions from the
eference and target datasets in two species to learn the trans-
ormation model. Conversely, MAnorm was excluded because
t requires the common peak regions between reference and
arget datasets to learn its transformation model, which was
ot available for cross-species normalization. 

uantification of the preservation of combinatorial 
atterns across different cell types 

o evaluate the preservation of combinatorial patterns for dif-
erent epigenetic features, we first combined the signal matri-
es of different cell types and applied a K-means clustering
ethod to group the data from different cell types into dis-

inct clusters. To ensure the robustness of this analysis, we
sed various numbers of clusters ( K = 20, 30, 40, 50) in the
 -means clustering step. After K -mean clustering, we quan-

ified the mixing of various cell types’ cCREs in the cluster-
ng results using the average silhouette width (ASW), a metric
anging from 0 to 1 ( 40 ). Lower ASW values indicate a bet-
er mixing of cCREs across different cell types within each
luster relative to the between cluster distance. Here, we as-
umed if a normalization method effectively preserves these
atterns, pooling cCREs’ epigenomic signal matrices from dif-
erent cell types and then clustering them should yield a good
ixture of cCREs from all cell types in the resulting clus-

ers, and thus result in lower ASW scores. Specifically, we first
ooled the epigenomic signal matrices of two cell types ( X ct1

nd X ct2 ) into one matrix X ct 1& ct 2 , where X ct 1& ct 2 , is a 2 n -by-
 2-dimensional matrix. Then, we ran K -means clustering on

he X ct 1& ct 2 matrix. For i -th cCRE belonging to cell-type- ct1
ithin the X ct 1& ct 2 matrix, its silhouette width s i in K -means

lustering result is defined as follows: 

s i = 

b i − a i 
max 

(
a i , b i 

)
a i is the average dissimilarity between the i -th cCRE and

ll other cCREs of cell-type- ct1 in the cluster k to which i -th
CRE belongs, and b i is the average dissimilarity of the i -th
CRE to all cCREs of cell-type- ct2 in the same cluster k . The
SW is defined as the average of s i of all 2n cCREs in the
 ct 1& ct 2 matrix. 
To measure the proportion of combinatorial patterns that

re robustly identified across all cell types, we first performed
-means clustering (K = 30) for each cell type independently.
pecially, for each cell type c , we first employed K-means clus-
ering ( K = 30) on its epigenomic signal matrix X ct: c . This
esulted in a vector of K-means cluster labels C ct: c . We then
elected cCREs (rows) from the matrix X ct: c that belonged to
 specific cluster h . This subset matrix was denoted as: 

X ct: c, h = X ct: c | C ct: c = h 
For these selected cCREs, we computed the average signal
vector of all epigenetic features. This is represented as X ct: c, h ,
where X ct: c, h is a vector (length equals to the number of epi-
genetic features m ) with mean values from the columns of the
X ct: c, h matrix (mean signal vector). In our analysis, m equals
to 7, corresponding to the 7 epigenetic features in EpiMAP
data. We then pooled all mean signal vectors X ct: c, h s of all cell
types into one mean signal matrix X ct _ mean (a K*CT- by -m ma-
trix, where K is the number of K -means clusters (K = 30), and
CT is the number of cell types). We next clustered the rows in
the X ct _ mean matrix using the second round of K -means clus-
tering ( K = 30) (Figure 3 B). The output clusters containing at
least one mean signal vector from all cell types were defined as
robust clusters. We used the proportion of the robust clusters
to evaluate different normalization methods. A higher propor-
tion of robust clusters would indicate that the normalization
method was more effective in generating consistent combina-
torial patterns across different cell types. We repeated this pro-
cess multiple times with different random seeds to ensure the
robustness of our conclusions. 

Cross-cell type RNA-seq predictions 

Integration of various epigenetic features, such as DNA ac-
cessibility and histone modifications, has been demonstrated
to be an effective approach for prediction of gene expression
levels. Since RNA-seq data is independent from epigenomic
data, we hypothesized that properly normalized epigenetic sig-
nal matrices could better preserve the combinatorial patterns
of epigenetic events across different cell types, thus enhanc-
ing the transferability of RNA-seq prediction models based
on these combinatorial patterns and improving the accuracy
of gene expression predictions across different cell types. Fol-
lowing the model design proposed by Xiang et al. ( 3 ), we used
the average signals of eight epigenetic features at both prox-
imal regions (TSS ± 1 kb) and distal cCRE regions (TSS ±
500 kb, excluding proximal regions) for all genes as predic-
tors to train regression models for RNA-seq log2 transcripts
per million (log2TPM) predictions. The RNA-seq signals for
different cell types were normalized by QTnorm against the
average RNA-seq log 2 TPM across all cell types. To ensure the
robustness of our evaluation, we tested three different models:
a linear regression model (LM), a gradient boosting regression
model (GBM) ( 41 ), and a linear regression model with gene
grouping (LM-gene-grouping) ( 3 ). For gene grouping, we di-
vided the gene set into four groups based on their average ex-
pression levels and standard deviations: (i) consistently low
(mean < 0.5, sd < 0.2), (ii) differentially low (mean < 0.5, sd
≥ 0.2), (iii) differentially high (mean > = 0.5, sd ≥ 0.2), and
( 4 ) consistently high expression (mean ≥ 0.5, sd < 0.2) across
cell types. For each evaluation run, we randomly selected 80%
of protein-coding genes in one training cell type to train the
model, then used the remaining 20% of protein-coding genes
in another testing cell type for model evaluation. Model per-
formance was evaluated using R 

2 , with higher R 

2 values indi-
cating more accurate cross-cell type RNA-seq predictions. We
repeated this comparison multiple times with different ran-
dom seeds to ensure the robustness of our conclusions. 

Comparison of the post-normalization signal 
consistency between biological replicates 

We reasoned that improved normalized signals would result
in increased consistency between biological replicates. There-
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fore, we first independently normalized the signals of different
replicates. Specifically, we treated different biological repli-
cates of the same cell type as if they were from distinct cell
types. We then separately normalized the data of each repli-
cate against the same reference data. This was implemented to
ensure that no information from one biological replicate could
affect or bias the normalization of another replicate. Then, we
employed two metrics to quantify signal consistency: (i) the R 

2

values, which were computed between the post-normalization
signal vectors of each pair of biological replicates, and (ii) the
Jaccard index values, which were calculated between the peak-
calling results derived from the post-normalization signals of
different replicates. Higher values for both R 

2 and Jaccard in-
dexes indicate better post-normalization signal consistency. 

Peak calling from cCRE signal matrices 

To compare normalization methods using peak calling results
for CTCF ChIP-seq and DNase-seq, we employed an itera-
tive Z -score-based approach, akin to the hotspot peak calling
method ( 42 ,43 ), to call peaks from post-normalization cCRE
signal matrices. For a specific epigenetic feature in a given cell
type, we first converted normalized signals in all cCREs into
Z -scores. We then selected cCREs with false discovery rate
(FDR) adjusted P -values ≥ 0.1 to establish a second-round
background model. Next, we recalculated the Z -scores and
corresponding P -values for all cCREs using this updated back-
ground model. The cCREs with FDR adjusted P -values < 0.1
were used as the output peak list for that chromatin feature
in each cell type, which was ultimately utilized in downstream
evaluations. 

Given that the number of peaks can vary significantly de-
pending on statistical thresholds and methods, we applied a
non-parametric, rank-based method to identify the same num-
ber of CTCF peaks for each cell type across different nor-
malization methods. Specifically, we first used the iterative Z -
score-based strategy to call CTCF peaks for a specific cell type
across different normalization methods. The number of peaks
( N max ) for a specific cell type was determined based on the
maximal peak count observed across the methods. Then, for
different normalization methods, we used the top N max cCREs
based on the normalized CTCF signals as the CTCF peaks for
the specific cell type. 

Differential peak calling from cCRE signal matrices 

As described in the ‘Peak calling from cCRE signal matrices’
section, for different normalization methods, we applied the
rank-based method to identify the same number of differen-
tial peaks for DNase-seq datasets in different cell-types and
glucocorticoid receptor (GR, gene symbol NR3C1) ChIP-seq
datasets in A549 cell type with and without dexamethasone
(Dex) treatment. Specifically, the top N peaks based on log 2
fold change of DNase-seq signals in a pair of cell-types or an
absolute value of log 2 fold change between Dex-treated and
untreated control conditions were defined as differential peaks
and used for the downstream differential peak analysis. 

Comparison between CTCF peaks and orthogonal 
data 

To evaluate the ability of normalized signals to accurately cap-
ture true biological events, we compared CTCF peak sets de-
rived from different post-normalization CTCF signal vectors
with orthogonal data sets. For different normalization meth-
ods, the same number of CTCF peaks was generated using 
the iterative Z-score-based peak calling followed by a rank- 
based method, as detailed in the ‘Peak calling from cCRE sig- 
nal matrices’ section. We then evaluated CTCF peaks using 
three types of orthogonal data: ( 1 ) YY1 (CTCF cofactor) peak 

( 44 ,2 ) TAD boundaries ( 45–47 ) and ( 3 ) the CTCF binding site
motifs ( 48 ,49 ). 

We first compared the enrichment of CTCF peaks in YY1 

peak regions. We reasoned that true CTCF peaks should 

exhibit greater enrichment in functionally related regions.
Specifically, we divided the CTCF peaks into three dis- 
tinct groups: (i) CTCF peaks shared by QTnorm / Harmony 
and JMnorm methods, (ii) CTCF peaks uniquely called 

from JMnorm data, (iii) CTCF peaks uniquely called from 

QTnorm / Harmony data. The enrichments were calculated as 
follows: 

ex p CTCF & YY 1 = obsCTCF × YY 1 RegionSize 
GenomeSize 

enrichmen t CTCF & YY 1 = 

ob s CTCF & YY 1 + 1 

ex p CTCF & YY 1 + 1 

, 

where ( obsCTCF ) represents the number of CTCF peaks 
in each group, ( YY 1 RegionSize ) represents the total num- 
ber of base-pairs in the genome covered by YY1 peaks,
( GenomeSize ) represents the hg38 genome size, ( ob s CTCF & YY 1 ) 
represents the observed number of CTCF peaks that intersect 
with YY1 peak regions by at least one base-pair. Due to the 
limited availability of YY1 peak datasets in some cell types, we 
pooled available YY1 peaks creating a single unified YY1 peak 

set for the YY1-CTCF peak intersection enrichment compar- 
isons. Similarly, due to the availability issue for TAD bound- 
ary sets, we employed a unified TAD boundary region set for 
TAD boundary-CTCF peak intersection enrichment compar- 
isons ( Supplementary Table 1 ). 

We then compared the proportion of CTCF peaks contain- 
ing CTCF motif (Jaspar ID: MA0139.1) for the data normal- 
ized by different normalization methods. We used FIMO ( 50 ) 
to assess whether CTCF peak contained CTCF motif using 
a q -value threshold of ⇐ 1e-03 for motif identification. The 
CTCF peak set was partitioned into the same three groups as 
described earlier for the CTCF-YY1 enrichment comparison. 

Clustering cCRE based on cross-cell type 

DNase-seq patterns 

We employed the Snapshot package with default settings to 

cluster cCREs based on DNase-seq signal patterns across dif- 
ferent cell types. Snapshot was chosen for its ability to effi- 
ciently identify smaller clusters, automatically determine the 
ideal cluster number, and consider signal correlations across 
cell types when grouping cCREs into separate clusters using 
an indexing strategy ( 8 ). To quantify the signal-to-noise ratios 
for the Snapshot output clusters, we defined ‘Signal’ as the top 

quantile (100%, 90%, 80%, 70%, 60%) signal and ‘Noise’ as 
the bottom quantile (10%, 20%, 30%, 40%, 50%) signal in 

the meta-cluster heatmap. We calculated the signal-to-noise 
ratio using different combinations of ‘Signal’ and ‘Noise’ and 

corresponding statistical significance of the differences using 
the paired Wilcoxon test. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
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dentification of cell-type-specific DHSs 

or each cell type within a cell type pair, we initially identified
0 000 cell-type-specific DHSs from the post-normalization
Nase-seq signal vectors using different normalization meth-
ds, following the strategy detailed in the ‘Differential peak
alling from cCRE signal matrices’ section. Then, using the
edtools intersect function with default parameters ( 51 ),
hese cell-type-specific DHSs were categorized into three
roups: JMnorm-uniquely identified, QTnorm-uniquely iden-
ified, and those shared by both JMnorm and QTnorm meth-
ds. 

dentification of differential glucocorticoid receptor 
GR) ChIP-seq peaks after dexamethasone (Dex) 
reatment 

or GR motif analyses and comparison of human phenotype
erm enrichments, we used the top 2000 differential peaks,
dentified based on the absolute value of the log2 fold changes
etween GR signals in A549 cells with and without Dex treat-
ent. For different normalization methods, we analyzed the

ame number of differential GR ChIP-seq peaks. We com-
uted GR motif (JASPAR ID: MA0113.1) scores in differen-
ial peaks as the −log 10 P -value using the FIMO ( 50 ) motif
canning algorithm. The method for calculating the human
henotype term enrichment score is described in the ‘Human
henotype term enrichment by GREAT analysis’ section. 

uman Phenotype term enrichment by GREAT 

nalysis 

o quantify enrichment of human phenotype terms for genes
ssociated with distinct peak sets including cell-type-specific
HS and differential GR peaks post-Dex treatment, we uti-

ized the rGREAT package ( 52 ,53 ). In this study, proximal
egions were defined as TSS −5 kb to +1 kb, and distal re-
ions were defined as proximal regions ±100 kb. To focus
n more specific terms, we excluded human phenotype terms
inked with > 1000 genes to eliminate overly general associa-
ions. 

To compare the enrichment of human phenotype terms in
ell-type-specific DHSs or differential GR ChIP-seq peaks af-
er Dex treatment, we assumed that DHSs that are shared
cross normalization methods or differential GR ChIP-seq
eaks that are identified using TSnorm_cbg corresponded to
pigenetic signals representing true biological events. We iden-
ified the top 30 enriched human phenotype terms for these
hared DHSs or differential GR ChIP-seq peaks. Next, for
ach normalization method, we quantified enrichments of
he top 30 terms in cell-type-specific DHSs uniquely identi-
ed by each method and used these enrichments as a metric
or method comparisons. Since relatively few differential GR
eaks were unique to different normalization methods impair-
ng the reliability of significance calculation of the human phe-
otype term enrichments, we compared performance of the
ormalization methods using enrichment of the top 30 terms
n all differential GR peaks identified by each method instead.

valuation of computational efficiencies 

o facilitate utilization of the JMnorm, we compared com-
utation efficiencies of different normalization methods by
easuring the running time and maximum memory usage for
arious datasets with different number of cCREs in an AWS  
m5.4xlarge instance. When processing 10 datasets, each com-
prising a signal matrix of 7 epigenetic features at one million
cCREs, JMnorm completed the normalization in ∼9.5 min,
consuming 10.9 GB of RAM ( Supplementary Figure 1 ). In
comparison, QTnorm completed normalization in ∼4 min,
utilizing 2.4 GB of RAM. The increased maximum RAM us-
age observed with JMnorm arises from computing pairwise
distance matrix for cCREs in the DynamicTreeCut method.
It is worth noting that the RAM requirement does not esca-
late with the increased number of cCREs, because we have
optimized this process by sampling a fixed number of rows
(20000) from the data during this computation. Therefore,
while JMnorm requires more computational resources and
slightly longer running time relative to other methods, its re-
quirements remain feasible for typical computer servers and
laptops. 

Using Harmony for cross-cell type multi-feature 

batch corrections 

The Harmony method ( 54 ), originally designed for single-cell
batch correction, transforms the input signal matrix to PCA
space for batch correction. During this process, it modifies the
signal matrices of both reference and target cell types in each
run. As a result, in order to correct technical biases for signal
matrices across cell types against a single reference matrix,
both reference matrix and matrices for all cell types would
need to be included in a single Harmony run, which would
consume an excessive amount of computational resources. To
address this issue, for each Harmony run, we assigned five
times greater weight to the reference signal matrix than to
the signal matrix of an individual target cell type. We rea-
soned that potential technical signal biases of the reference
signal matrix would outweigh the biases of individual target
cell type. This approach allowed for batch correction of data
across all cell types against the same reference signal matrix
without requiring the inclusion of all cell types’ data in a single
Harmony run. 

Results 

JMnorm overview 

The goal of JMnorm is to simultaneously normalize multiple
epigenetic features across cell types, species, or experimental
conditions by leveraging information from functionally corre-
lated features. The input for JMnorm is signal matrices com-
prising data for multiple epigenetic features for a desirable
number of regulatory regions in two or more cell types or ex-
perimental conditions (reference and target cell types or condi-
tions). To develop the method, we utilized human and mouse
ENCODE cCREs ( 2 ), comprehensive collections of genome-
wide regulatory elements generated in multiple cell types in
the two species. 

The method consists of four key steps (Figure 1 ). In step 1,
orthogonal transformation, JMnorm converts the correlated
components of multi-dimensional epigenetic signal matrices
for both reference and target cCREs into mutually orthog-
onal PCA dimensions. This process generates corresponding
PCA matrices, effectively preserving the relationships between
functionally related epigenetic features (Figure 1 A) ( 55 ). In
the subsequent steps 2 and 3, JMnorm performs data normal-
ization within the PCA space, which simultaneously normal-
izes all features and transfers the cross-feature patterns from

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
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A B

C D

Figure 1. An o v ervie w of the four key steps in the JMnorm normalization procedure. ( A ) Step 1: orthogonal transformation. The correlated components 
of various epigenetic signals are transformed into mutually independent high-dimensional PCA dimensions. Each colored block on the left represents the 
signal vector of all epigenetic features at the n ref or n tar cCRE regions in reference or target samples, respectively. Colored blocks on the right denote 
corresponding transformed PCA epigenetic signal matrices for reference and target samples. The yellow box in the middle represents the PCA rotation 
matrix learned from the reference signal matrix. ( B ) Step 2: cCRE clustering. Reference cCRE clusters are generated based on the reference data in the 
PCA space with the a v erage signal reference matrix shown as a heatmap. The Reference cCRE clusters were generated by K -means clustering method 
( K = 40). The K was determined automatically through hierarchical clustering followed by the DynamicTreeCut method ( 39 ). Detailed description of 
these procedures is provided in the Materials and Methods section. Target cCREs are assigned to reference clusters according to the Euclidean 
dist ances bet w een the signal v ector of the target cCRE and the a v erage signal v ectors of reference clusters in the PCA space. Within each cluster, the 
number of cCREs, shown as colored blocks within the insert, may vary between the reference and target samples. ( C ) Step 3: within-cluster 
normalization. Target signal matrix is normalized against the reference matrix using within-cluster quantile normalization as shown for Cluster k . ( D ) 
Step4: reconstruction of the JMnorm-normalized target signal matrix in the original signal space. The yellow box in the middle indicates the transposed 
PCA rotation matrix learned in the first step (panel A). 
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the reference signal matrix to the post-normalization signal
matrices of the target cell types or conditions. We anticipate
that this strategy can improve the performance of downstream
prediction models that utilize the cross-feature patterns for
tasks such as gene expression prediction ( 56–58 ), enhancer–
promoter interaction prediction ( 59–61 ), or epigenomic data
imputation ( 62–66 ), especially for cross-cell-type predictions.
Specifically, in step 2, cCRE clustering, JMnorm first clusters
( N ) cCREs based on the reference PCA matrix into (M) ref-
erence clusters ( M << N ). It then assigns each of the indi-
vidual target cCREs into the nearest reference cluster based
on signal similarity in the PCA space (Figure 1 B). In step 3,
within-cluster normalization, JMnorm normalizes the target
cCRE signals (PCA-transformed) to the corresponding ref-
erence cCRE signals (PCA-transformed) using quantile nor-
malization within each cluster (Figure 1 C). When performing
cCRE clustering (step 2) followed by within-cluster QTnorm
(step 3), we assume that ( 1 ) the combinatorial patterns of epi-
genetic features are conserved across cell types or conditions
and ( 2 ) within each cCRE cluster, the signal distributions of 
PCA matrices are also conserved across cell types or condi- 
tions. It is important to note that the number of target cCREs 
assigned to each reference cluster can vary for different tar- 
get datasets, thereby resulting in different global signal dis- 
tributions across cell types or conditions after normalization.
Therefore, this strategy can circumvent potential biases inher- 
ent in QTnorm, which forces identical global signal distribu- 
tions across diverse datasets. Once steps 1–3 are completed,
JMnorm transforms the normalized target signal matrix from 

the PCA space back to the original signal space in step 4 (Fig- 
ure 1 D). The details of these steps can be found in the Mate- 
rials and Methods section. 

Evaluation of preservation of cross-feature 

correlation 

We evaluated the performance of JMnorm relative to a panel 
of other normalization methods ( Supplementary Table 2 ) 
(TSnorm, TSnorm_cbg, MAnorm, S3norm, QTnorm), which 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
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Figure 2. Evaluation of cross-feature correlation preservation. ( A ) Reference signal cross-feature correlation matrix. ( B ) Raw signal cross-feature 
correlation matrix in target neutrophil (NEU) cell type. ( C ) JMnorm-normalized signal cross-feature correlation matrix in target NEU cell type. ( D ) A 

boxplot of MSEs between human target and reference correlation matrices for the seven normalization methods. ( E ) A boxplot of MSEs between 
correlation matrices of mouse target cell types and the human reference for the six normalization methods. 
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re frequently applied as initial data normalization strategies
or various downstream analyses. We also included Harmony,
 widely used batch correction method for single-cell data.
imilar to JMnorm, Harmony utilizes PCA transformation to
arness information from correlated features within multi-
imensional data ( 54 ). 
The first evaluation was to compare the performance of JM-

orm and other normalization methods for their ability to pre-
erve the cross-feature correlation among different epigenetic
eatures across multiple cell types. While it is possible to use
ata from one particular cell type as a reference for normaliz-
ng data from other cell types, this approach could introduce
iases from the data of the chosen cell type. To circumvent
uch potential biases, we generated a reference dataset by av-
raging each epigenetic feature across all cell types. Next, we
sed the selected methods to normalize raw signal matrices of
arget cell types against the reference signal matrix. The re-
ulting post-normalization signal matrices were then used to
ompute the cross-feature correlation matrices. 

We first inspected the cross-feature correlation matrices
erived from the reference, the raw data, and JMnorm-
ormalized data from neutrophil (NEU) cells, respectively
Figure 2 A, B, and C). We observed that the JMnorm-derived
orrelation matrix was more similar to the reference cor-
elation matrix than to the correlation matrix of the raw
ata. Specifically, correlation matrices derived from both JM-
orm and reference signal matrices exhibited strong posi-
ive correlations between features within the active chromatin
eature group (H3K27ac, H3K4me3, H3K4me1, A T AC-seq)
nd the repressed chromatin feature group (H3K27me3 and
3K9me3) (Figure 2 A and C). Conversely, we observed a sub-

tantial negative correlation between features in active and re-
pressed chromatin groups (Figure 2 A and C) ( 1 ,2 ). In contrast,
the aforementioned correlation relationships are much weaker
in the raw data (Figure 2 B), likely due to the technical biases in
the raw data. These results suggest that JMnorm is effective in
reducing technical biases and preserving and transferring the
cross-feature correlation information, which is better aligned
with our prior knowledge, from the reference to the target cell
type. 

We then compared the panel of methods by measuring
the MSEs between cross-feature correlation matrices of the
normalized data and the reference across different cell types.
JMnorm-derived correlation matrices better preserved the in-
formation in the reference correlation matrix than those de-
rived from other methods, as indicated by its significantly
lower MSEs (paired Wilcoxon test between JMnorm and the
second-best performing method, P -value = 3.81e-06; Figure
2 D). 

Furthermore, the superior performance of JMnorm also
holds true in cross-species normalizations, when mouse cCRE
signal matrices of different cell types were normalized against
the human reference signal matrix. Specifically, JMnorm pro-
duced significantly lower MSEs than other methods (paired
Wilcoxon test between JMnorm and the second-best perform-
ing method, P -value = 2.13e-04) when comparing the corre-
lation matrices of each mouse target cell type to the human
reference (Figure 2 E). 

Since experimental data for large panels of epigenetic fea-
tures might not always be available, we also assessed JM-
norm’s performance with fewer features. As demonstrated in
Supplementary Figure 2 , JMnorm can effectively preserve and
transfer cross-feature correlation information when normaliz-
ing datasets containing as few as two epigenetic features. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
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Evaluation of consistency of cross-feature 

combinatorial patterns across cell types 

Combinatorial patterns of epigenetic features, such as the epi-
genetic states identified in genome segmentation analysis ( 27 ),
reflect functionally relevant interactions between DNA acces-
sibility, histone modifications, and transcription factor bind-
ing under specific cellular and experimental conditions. They
are often used to accurately infer transcriptional states and
interpret the function of non-coding genetic variants ( 2 ,24–
27 ,56–58 ). Previous studies have shown that combinatorial
patterns of epigenetic features such as epigenetic states are
maintained across different cell types or even species ( 4 ). With
the expanding variety of epigenetic features and functional
element annotations along with the growth in profiled cell
types, there is a growing need for normalization methods that
can effectively integrate and preserve recurring combinato-
rial patterns within the epigenetic states across diverse cell
types. 

We first compared the panel of methods for their abil-
ity to harmonize signal matrices of various epigenetic fea-
tures across multiple cell types. A better normalization method
should more consistently preserve common combinatorial
patterns in different cell types and thus allow better data inte-
gration across cell types. To quantify the degree of preserva-
tion of common combinatorial patterns, we first pooled cCRE
signal matrices of seven epigenetic features from each pair
of different cell types and identified the combinatorial pat-
terns by clustering cCREs using K -means ( K = 30, 20, 40,
50). We then measured the ASW score, which ranges from
0 to 1 and a lower score indicates better sharing of combi-
natorial patterns between cell types ( 40 ). As shown in Fig-
ure 3 A and Supplementary Figure 3 , JMnorm has significantly
lower ASW scores than other methods (paired Wilcoxon test
between JMnorm and the second-best performing method, P -
value = 3.05e-05, 3.05e-04, 2.14e-04, 6.23e-03 for different K
values in K -means clustering), indicating that the multi-feature
signal matrices normalized by JMnorm achieved better inte-
gration among cell types within each cCRE clusters. 

Next, we clustered all cCREs from the 24 cell types groups
available in EpiMAP database and used the resulting cCRE
clusters (Figure 3 B) to compare different normalization meth-
ods, using the proportion of robust cCRE clusters ( 4 ) as a
metric of global preservation of epigenetic feature patterns
across different cell types. Here, a robust cCRE cluster is de-
fined as the cCRE cluster displaying high consensus across all
cell types. A higher proportion of robust cCRE clusters would
indicate a better preservation of combinatorial feature pat-
terns across cell types (see Materials and method section for
details). JMnorm-normalized signal matrices resulted in a sig-
nificantly higher proportion of robust cCRE clusters (paired
Wilcoxon test between JMnorm and the second-best perform-
ing method, P -value = 2.60e-04) than those obtained by other
methods (Figure 3 C). 

Results of these comparisons demonstrate that JMnorm
outperforms other methods in integrating multi-feature signal
matrices and preserving cross-feature combinatorial patterns
across different cell types. It is worth noting that the cross-
feature correlation (Figure 2 ) and cross-feature consistency of
combinatory patterns (Figure 3 A and B) across varying cell
types or conditions are expected to improve after JMnorm
normalization. However, JMnorm does not directly optimize
these two properties. Instead, they are naturally improved dur-
ing JMnorm’s normalization processes. 
Evaluation of cross-cell-type gene expression 

predictions 

Since JMnorm integrates the multi-feature signal matrices and 

preserves cross-feature combinatorial patterns across differ- 
ent cell types better than other methods, we anticipated that 
the gene expression prediction models utilizing data normal- 
ized by JMnorm would also exhibit improved performance 
in cross-cell-type predictions. Therefore, we compared nor- 
malization methods by their ability to improve cross-cell type 
gene expression predictions. We trained three types of re- 
gression models to learn the quantitative relationships be- 
tween seven epigenetic features and RNA-seq data: a lin- 
ear regression model (LM), a gradient boosting regression 

model (GBM) ( 41 ), and a linear regression model with gene- 
grouping that is based on cross-cell type average expression 

levels and standard deviations (LM-gene-grouping) ( 3 ). The 
details about training and testing of these regression models 
are described in the Materials and Methods section. Briefly,
we randomly divided protein-coding genes into two groups: 
80% of genes were used for model training (Training-Genes) 
and 20% of genes were used for model evaluation (Testing- 
Genes). The regression models were trained using the sig- 
nals of Training-Genes in one Training-Cell-Type and eval- 
uated by R -squared ( R 

2 ) using the signals of Testing-Genes 
in another T esting-Cell-T ype, representing the most challeng- 
ing cross-cell type hold-out gene prediction setting in gene 
expression prediction tasks. As shown in Figure 3 D and 

Supplementary Figure 4 , JMnorm-normalized data had signif- 
icantly higher R 

2 than other normalization methods across all 
three regression methods and different cell-type-pairs (paired 

Wilcoxon test between JMnorm and the second-best per- 
forming method, P -values are LM: 6.16e-06, GBM: 1.48e- 
08, LM-gene-grouping: 2.54e-07). These results demonstrate 
that JMnorm-normalized epigenetic signals improve perfor- 
mance of cross-cell type gene expression prediction models,
suggesting that the JMnorm-normalized epigenetic data are 
more consistent with gene expression levels, an orthogonal bi- 
ological data type, than those normalized by other methods. 

Evaluation of signal consistency between biological 
replicates 

We next evaluated different methods based on consistency 
of post-normalization signal strengths between biological 
replicates, measured by R 

2 . A better normalization method 

should result in higher signal consistency between the in- 
dependently normalized replicates. We examined the repli- 
cate consistency of the post-normalized H3K27ac ChIP- 
seq signals across 9 different cell types. Six other features 
were used for JMnorm normalization of H3K27ac ChIP- 
seq data. JMnorm-normalized data had significantly higher 
R 

2 values than data normalized by other methods (paired 

Wilcoxon test between JMnorm and the second-best per- 
forming method, P -value = 1.95e-03) (Figure 4 A). Moreover,
JMnorm-normalized data had the highest or the second high- 
est R 

2 values across all 7 examined epigenetic features (Fig- 
ure 4 A and Supplementary Figure 5 ), especially those that are 
more likely to reflect cell-type-specific epigenetic events such 

as A T AC-seq, H3K27ac, and H3K4me1 ( 1 ). 
As an additional metric, we assessed the replicate consis- 

tency of enriched peak calling results for H3K27ac across 
9 cell types. To this end, the same peak-calling method was 
applied to post-normalized signals generated by the panel 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
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A

B

C D

Figure 3. Evaluation of consistency of cross-feature combinatorial patterns and gene expression predictions across cell types. ( A ) A boxplot of Average 
Silhouette Widths (ASWs) for the seven normalization methods demonstrating quality of mixing of cCREs across different cell types in clustering 
outputs ( K -means: K = 30). ( B ) Top. A heatmap of the a v erage signals at cCRE clusters for seven epigenetic features in 24 EpiMAP cell type groups. 
Clusters are ordered by the K-means cluster label ( K = 30). Bottom. The heatmaps with distinct colors represent labels for different cell types and 
K -means clusters. ( C ) A boxplot of proportions of cCRE clusters that are reproducible in all cell types for the seven normalization methods. ( D ) A boxplot 
of R 

2 between observed and predicted RNA-seq values expressed as log 2 transcripts per million (log 2 TPM) for the seven normalization methods. Linear 
regression model with gene grouping was used for the predictions. 
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f normalization methods, and an equal number of called
eaks was identified for evaluation of replicate consistency
sing the Jaccard index. Besides the signal strengths consis-
ency, JMnorm’s peak calling results also had higher repli-
ate consistency as indicated by significantly higher Jaccard
ndex values compared to peaks generated from data normal-
zed by other methods (paired Wilcoxon test between JMnorm
nd the second-best performing method, P -value = 4.5e-03;
igure 4 B). 
We then generated scatterplots of post-normalization sig-

als at individual cCREs for the two biological replicates
rom the H3K27ac ChIP-seq experiment in CD8 

+ T-cells
Figure 4 C and Supplementary Figure 6 ). Compared to
ther methods, the scatterplot for JMnorm showed consid-
rably less deviation from the diagonal line (indicating a
igher R 

2 ), especially for the cCREs with low or noise-like
ignals. 

To demonstrate that JMnorm does not over-correct the
ata, we calculated R 

2 of post-JMnorm-normalization val-
es between biological replicates of the same cell type and
iological replicates of different cell types. As shown in
upplementary Figure 7 , across all seven epigenetic features,
he R 

2 values between replicates of the same cell type (or-
nge boxes) were significantly higher than those between
eplicates from different cell types (gray boxes). The paired
Wilcoxon test affirmed this finding, with p-values ranging
from 2.55e-09 to 3.90e-04 for all evaluated epigenetic fea-
tures. These results demonstrate our method’s effectiveness
in preserving both cell type-specific differences and con-
sistency between biological replicates within the same cell
type. 

These results suggest that by leveraging information from
functionally correlated features, JMnorm can more effectively
improve replicates consistency by reducing technical noise and
preserving true epigenetic signals than other normalization
methods. 

It is important to note that JMnorm performance is not uni-
versally superior to all other methods for normalization of all
examined epigenetic features. For example, since H3K4me3
is a canonical marker of gene promoters, its ChIP-seq signals
have similar global distributions across different cell types.
This type of signal distribution is expected to be suitable for
QTnorm, which enforces identical post-normalization signal
distributions. Hence, QTnorm exhibited a slightly higher R 

2

between biological replicates for H3K4me3 ChIP-seq signal
than JMnorm ( Supplementary Figure 5 ). Based on the over-
all performance, we conclude that JMnorm surpasses other
normalization methods in enhancing signal and minimizing
technical noise and improves consistency between biological
replicates. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
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Figure 4. Evaluation of the post-normalization signal consistency between biological replicates. ( A ) A boxplot of R 

2 values between biological replicates’ 
signals in multiple cell types for the seven normalization methods. ( B ) A boxplot of Jaccard indexes comparing peak calling results between biological 
replicates of multiple cell types for the seven normalization methods. ( C ) Scatterplots of H3K27ac ChIP-seq signal in CD8 + T-cells in two biological 
replicates normalized by QTnorm (left) and JMnorm (right). Data are shown on log2 scale. Bright orange and gray colors indicate higher and lower data 
point density, respectively. 
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Evaluation of quality of peak calling results 

Based on the performance evaluations results above, JMnorm,
QTnorm, and Harmony outperformed the other four meth-
ods. This outperformance is expected since JMnorm incorpo-
rates the strengths of both QTnorm and Harmony: as QT-
norm, it minimizes the complex technical biases by equalizing
the signals of the same rank, and as Harmony, it combines
the highly correlated variables in the PCA space. To more
closely evaluate the seven normalization methods, we com-
pared their performance by the quality of peak calling results
(Figure 5 and Supplementary Figures 8 and 9 ). We hypothe-
sized that better normalization could improve the accuracy of
peak calling results by reducing both false positives and nega-
tives, thereby yielding peaks more closely associated with true
biologically relevant events. 

For this test, we first selected TF ChIP-seq data for CTCF
( 67 ) and YY1 ( 44 ) because the role of these TFs in transcrip-
tion regulation at gene promoters, enhancers, and topologi-
cally associating domain (TAD) boundaries is well understood
and their DNA-binding motifs had been extensively char-
acterized. Specifically, CTCF and YY1 often co-occupy the
same genomic regions at the promoters and enhancers of ac-
tive genes ( 44 ), whereas TAD boundaries are uniquely bound
by CTCF ( 45–47 ). Moreover, approximately 80% of previ-
ously validated CTCF ChIP-seq peaks contain CTCF bind-
ing motifs ( 48 ,49 ). To evaluate the quality of CTCF ChIP-
seq peak calling results, we applied the same peak-calling
method to the post-normalized signals generated by the seven
normalization methods, yielding an equal number of CTCF 

peaks for each method (see Materials and Methods section 

for more details). The resulting CTCF peaks were evaluated 

using the following three metrics: (i) enrichment at YY1 peak 

regions, (ii) enrichment at TAD boundaries and (iii) frac- 
tion of the CTCF peaks with CTCF DNA-binding motif.
We found that CTCF peaks, uniquely called using JMnorm- 
normalized data, exhibited significantly higher enrichment at 
YY1 peak regions than the ones generated by other methods 
(paired Wilcoxon test P -values < 0.05) (Figure 5 ). Similarly,
JMnorm-normalized CTCF ChIP-seq peaks had significantly 
higher (paired Wilcoxon test P -values < 0.05) or compara- 
ble enrichment at TAD boundaries than other methods’ peaks 
( Supplementary Figure 8 ). Lastly, there is no significant dif- 
ference in proportion of CTCF peaks containing CTCF mo- 
tifs (Jaspar ( 68 ) ID: MA0139.1) with the JMnorm-normalized 

data relative to other methods’ data ( Supplementary Figure 9 ).
In sum, these findings suggest that JMnorm exhibits improved 

performance in terms of quality and biological significance of 
the resulting TF ChIP-seq peaks. 

We next focused on comparing the JMnorm and QTnorm 

by the quality of the DNase-seq peak calling results across cell 
types (Figure 6 and Supplementary Figure 10 ). Both methods 
are designed to minimize technical biases by equalizing the 
signals of the same rank. However, a critical technical bias 
of QTnorm is that it imposes an identical signal distribution 

across cell types, which might lead peak-calling algorithms to 

identify the same number of peaks for all cell types. We asked 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
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A B C

D E F

Figure 5. Evaluation of quality of TF peak calling results. Boxplots comparing JMnorm’s and six other methods’ performance as determined by CTCF 
peak enrichment at YY1 peak regions. ( A ) Comparison between JMnorm and QTnorm, ( B ) JMnorm and Harmony, ( C ) JMnorm and S3norm, ( D ) JMnorm 

and MAnorm, ( E ) JMnorm and TSnorm_cbg, and ( F ) JMnorm and TSnorm. Red box plots represent enrichments for CTCF peaks that are shared 
between JMnorm and a corresponding alternative method. Orange box plots represent enrichments for CTCF peaks uniquely identified by JMnorm. 
Blue box plots represent enrichments for CTCF peaks uniquely identified by the respective alternative method. 
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f JMnorm could circumvent this technical bias since it applies
Tnorm only within each cCRE cluster, which may contain
 different number of cCREs per cell type, thereby leading to
ifferent global signal distributions across cell types and vary-
ng numbers of peaks for the normalized data. 

To this end, we first compared the performance of QTnorm
nd JMnorm on the same set of DNase-seq data generated in
4 cell types and found that QTnorm calls the same number
f peaks across cell types, whereas JMnorm effectively identi-
es a different number of peaks per cell type ( Supplementary 
igure 10 A). As expected, most cell types close to stem cells
xhibited a larger number of peaks (denoted by orange color-
ng) than other cell types, consistent with prior observations
y Meuleman et al. ( 37 ) ( Supplementary Figure 10 B). 
We then evaluated the noise level for the two methods.

ince QTnorm imposes an identical signal distribution across
arious cell types, we expected more false positive peaks in
he cell types with fewer true biological peaks. Clustering
f cCREs based on these signals would reveal noisier cross-
ell type patterns with increased presence of weaker signals
n many cell types. To test the validity of these expecta-
ions, we utilized the Snapshot clustering algorithm to group
CREs using normalized DNase-seq signals ( 8 ) and then eval-
ated the quality of the resulting clusters. As expected, QT-
orm clusters exhibited relatively noisier cross-cell type pat-
erns ( Supplementary Figure 10 C and D) with significantly
ower signal-to-noise ratios than JMnorm’s clusters (paired

ilcoxon test P -value = 2.38e-07) ( Supplementary Figure 
0 E) (see Materials and methods section for more details), in-
icating that JMnorm-normalized DNase-seq signals had less
oise. 
Lastly, to determine whether the JMnorm-normalized

Nase-seq peaks contained true biologically meaningful in-
ormation, we conducted pairwise comparisons of post-
 

normalized DNase-seq peaks in different cell types and as-
sessed the enrichment of human phenotype terms ( 69 ,70 ) rel-
evant to the respective cell types in the differential peaks.
We reasoned that cell-type-specific differential peaks would
be more likely to reflect true biological differences between
cell types and corresponding top-enriched human phenotype
terms could be used to highlight the cell-type-specific func-
tional differences. An initial analysis of the differential peaks
identified in heart and lung cell types revealed greater enrich-
ment of heart-relevant terms in heart-specific peaks uniquely
identified using JMnorm-normalized DNase-seq data than
QTnorm-normalized data (Figure 6 A). Next, we conducted
the same pairwise DNase-seq peak analysis for 100 randomly
selected pairs of cell types. Differential peaks unique to JM-
norm had a significantly higher enrichment (paired Wilcoxon
test P -value < 0.05) in cell-type-specific functional terms than
peaks uniquely identified using other methods (Figure 6 B-G),
indicating that JMnorm-derived differential peaks may more
accurately capture true biological information. 

These results demonstrate that JMnorm improves the accu-
racy and biological relevance of the peak calling results. 

Evaluation of quality of differential peak calling in 

response to perturbations 

Small molecule perturbations often make a substantial and
global impact on the epigenome ( 71 ,72 ) presenting a substan-
tial challenge for data normalization. That is because many
normalization methods assume that differences in the over-
all signal ( 12–14 ) or common peak regions ( 16 ,17 ) between
different datasets are caused primarily by technical inconsis-
tencies rather than true biological changes in global epige-
netic signals. We compared the performance of seven normal-
ization methods by the quality of differential glucocorticoid

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
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A B C

D

G

E F

Figure 6. Comparative analysis of JMnorm and other methods using DNase-seq peak calling results. ( A ) A scatterplot of enrichments of the Human 
Phenotype terms in heart-specific peaks (relative to lung) uniquely identified by QTnorm (x-axis) or JMnorm (y-axis). The displayed terms are the top 30 
most significantly enriched terms identified by both methods. ( B ) A box plot of Human Phenotype terms enriched in shared and uniquely identified 
QTnorm’s or JMnorm’s peaks across 100 randomly selected cell type pairs. (C–G) same as (B), for comparison between ( C ) JMnorm and Harmony, ( D ) 
JMnorm and S3norm, ( E ) JMnorm and MAnorm, ( F ) JMnorm and TSnorm_cbg, and ( G ) JMnorm and TSnorm. 
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receptor (GR, gene symbol NR3C1) ChIP-seq peak calling
results in the context of dexamethasone (Dex) treatment of
A549 cells ( 15 ). We selected GR ChIP-seq data for this eval-
uation because GR is a well-characterized receptor for Dex,
GR’s binding to DNA increases globally with transient Dex
treatment, and its DNA-binding motif is also well known
( 73 ). 

For this analysis, we first normalized the GR ChIP-seq data
for both the Dex treatment condition and the no-treatment
control using each of the seven methods and then identi-
fied differential GR peaks using the post-normalization sig-
nals. For JMnorm and Harmony, the GR ChIP-seq data
were normalized in conjunction with four additional epige-
netic features (A T AC, H3K27ac, H3K4me1 and H3K4me3).
We benchmarked the performance of different normalization
methods relative to TSnorm_cbg. The TSnorm_cbg leverages
the same concept as the normalization of ChIP-seq with con-
trol (NCIS) ( 21 ) method that was specifically developed to
address the challenge of normalizing global differences be-
tween ChIP and control datasets, by calculating a scale factor
based on the information from common background regions
between the two. We hypothesized that better normalization
could improve the accuracy of differential peak calling results,
yielding peaks that are more closely associated with true bio- 
logically relevant changes induced by the perturbagen. 

As expected, most of the differential GR peaks (top 2000 

differential peaks based on absolute value of log 2 fold-change 
between Dex treatment sample and no treatment sample) 
called using TSnorm_cbg-normalized data were upregulated 

after Dex treatment (Figure 7 A), indicating an increase of GR 

binding to the genome. For JMnorm, most differential peaks 
also exhibited increased GR signals (Figure 7 B), similarly sup- 
porting our biological understanding. Conversely, only ap- 
proximately 50% of differential peaks called using QTnorm- 
normalized data were upregulated with Dex treatment (Figure 
7 C). 

To further characterize the differential GR peaks identi- 
fied using data normalized by the six methods relative to 

TSnorm_cbg-normalized data, we evaluated the quality of 
the GR motif (Jaspar ID: MA0113.1) (Figure 7 D) and the 
extent of Human Phenotype term enrichment (Figure 7 E 

and Supplementary Figure 11 ) in differential peaks. As ex- 
pected, GR motif scores and the degree of GR-related pro- 
cess term enrichment were significantly lower in differen- 
tial peaks called using QTnorm-, S3norm-, and MAnorm- 
normalized data as compared to those derived from the JM- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
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A B C

D E

Figure 7. Evaluation of quality of differential peak calling in response to perturbations. (A–C) Scatter plots of GR ChIP-seq signals at ENCODE cCREs with 
(x-axis) and without (y-axis) Dex treatment for ( A ) TSnorm_cbg, ( B ) JMnorm, and ( C ) QTnorm. Bright orange and gray colors indicate higher and lower 
data point density, respectively. Green color represents GR ChIP-seq signals for the top 20 0 0 differential peaks based on absolute value of log 2 fold 
change of signals between Dex treatment and no treatment control. ( D ) A boxplot of FIMO scores for GR motif (Jaspar ID: MA0113.1) found in 
differential peaks for the seven normalization methods. ( E ) A scatterplot of enrichments of the Human Phenotype terms in differential GR ChIP-seq 
peaks identified by QTnorm (x-axis) or JMnorm (y-axis). 
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orm (paired Wilcoxon test P -value < 0.05). These results
uggest that an improper matching of overall distribution
r signal-to-noise ratio can undermine the association be-
ween differential GR peaks and Dex treatment. In conclu-
ion, JMnorm improves the accuracy and biological signifi-
ance of the differential peak calling results relative to QT-
orm, S3norm, and MAnorm, and demonstrates a compa-
able performance relative to the other approaches includ-
ng the state-of-the-art method (TSnorm_cbg) for normaliza-
ion of epigenetic datasets with global differences induced by
erturbations. 

valuation of JMnorm performance at the 100 bp 

enomic bin resolution 

o evaluate the robustness of JMnorm’s performance at a
igher genomic resolution, normalization methods were com-
ared across multiple benchmarks at the 100 bp genomic
in resolution. As shown in Supplementary Figure 12 A, the
ross-feature correlation matrix computed using JMnorm re-
ults had significantly lower MSEs (paired Wilcoxon test be-
ween JMnorm and the second-best performing method, P -
alue < 2.2e-16), indicating higher consistency between the
ross-feature correlation matrices of the target and refer-
nce samples. Similarly, the cross-feature combinatory pat-
erns were more similar across different cell types result-
ng in lower ASW score (paired Wilcoxon test between JM-
orm and the second-best performing method, P -value = 4.2e-
03) and higher proportion of robust cCRE clusters (paired
Wilcoxon test between JMnorm and the second-best perform-
ing method, P -value = 5.7e-02) ( Supplementary Figure 12 B
and C). Since better preservation of cross-feature combinato-
rial patterns across different cell types should lead to a bet-
ter performance in the cross-cell type RNA-seq prediction
models, we further compared different normalization meth-
ods based on the accuracy of cross-cell type RNA-seq predic-
tions using post-normalization epigenetic signals as an input.
As shown in Supplementary Figure 12 D, JMnorm indeed had
significantly higher R 

2 between the predicted and observed
RNA-seq signals than other methods (paired Wilcoxon test
between JMnorm and the second-best performing method,
P -value = 4.8e-03). Next, we evaluated the signal and peak
calling consistency between the biological replicates. Results
shown in Supplementary Figure 12 E and F demonstrate signif-
icantly higher consistency for JMnorm-normalized data based
on both signal R 

2 (paired Wilcoxon test between JMnorm and
the second-best performing method, P -value = 7.28e-09) and
Jaccard Index of peak calling results (paired Wilcoxon test
between JMnorm and the second-best performing method, P -
value = 2.67e-09). 

In addition, we evaluated the JMnorm-normalized signals
by using the quality of its peak calling and differential peak
calling results as a metric, measured by comparing the con-
sistency between the peak calling and differential peak call-
ing results and orthogonal information. As demonstrated in
Supplementary Figure 13 A-E, when comparing CTCF peaks

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data


16 Nucleic Acids Research , 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad1146/7459476 by guest on 20 D

ecem
ber 2023
uniquely identified using JMnorm-normalized data with peaks
called using data normalized by other methods, CTCF peaks
derived from JMnorm consistently exhibited significantly
higher enrichments at the YY1 peak regions (paired Wilcoxon
test P -value < 0.05) than those derived from other methods.
Similarly, differential DNase peaks uniquely identified from
the JMnorm-normalized data showed higher enrichments in
cell type-specific functional terms compared to peaks uniquely
identified by other methods ( Supplementary Figure 13 F–J). 

Finally, we also evaluated JMnorm by the quality of
differential peak calling results in response to perturba-
tions. The scores for GR motif were higher for differen-
tial peaks obtained using JMnorm-normalized data in com-
parison with QTnorm-, S3norm-, or MAnorm-normalized
data ( Supplementary Figure 13 K). Similarly, enrichment lev-
els of the GR-related process terms for JMnorm-specific GR
differential peaks were significantly higher than those for
QTnorm-specific GR differential peaks (paired Wilcoxon test
P -value = 9.71e-06) ( Supplementary Figure 13 L). 

In conclusion, based on results of evaluations across mul-
tiple benchmarks, we found that JMnorm’s superior per-
formance was robust at higher resolution (100 bp ge-
nomic bins) used for generating the epigenomic signal
matrices. 

Discussion 

We present a novel approach named JMnorm that simultane-
ously normalizes multiple epigenetic features across cell types,
species, and experimental conditions by leveraging informa-
tion from functionally correlated features. JMnorm presents
several methodological advances over existing normalization
approaches that analyze each feature independently and thus
may distort relationships between epigenetic features. Specifi-
cally, JMnorm normalizes multiple epigenetic features jointly
in the PCA space that preserves correlations between different
features. Secondly, using a two-step process of initial cCRE
clustering followed by within-cluster quantile normalization,
JMnorm effectively reduces technical biases without impos-
ing identical global signal distributions across different cell
types. Following the principle of Occam’s razor, we have im-
plemented JMnorm using simple yet sufficiently effective sta-
tistical techniques. By employing these techniques, we aimed
to enhance the robustness of JMnorm and enable its wide ap-
plication for various downstream analyses. Future investiga-
tions could potentially benefit from exploring advanced tech-
niques, such as orthogonal transformation and cCRE cluster-
ing. We have demonstrated JMnorm’s improved capabilities
by comparing cross-feature correlation matrices before and
post-normalization, analyzing the extent of preservation of
combinatorial patterns of epigenetic features across different
cell types, and evaluating consistency between biological repli-
cates. Furthermore, in several use cases of epigenomic analy-
ses, such as prediction of gene expression, peak calling, and
differential TF binding, we showed that JMnorm achieves bet-
ter results than other methods when being validated against
various types of orthogonal biological data. Altogether, these
improvements underscore the strength of JMnorm in reducing
noise and preserving true biologically meaningful information
in epigenomic data. 

Given the superior performance of JMnorm across diverse
types of epigenetic features and genomic tasks, we anticipate
that it can be used across a broad range of applications. In
addition to the applications described in this work, a po- 
tential application for JMnorm is in normalizing single-cell 
gene module signal matrices. Single-cell gene expression anal- 
yses ( 74 ,75 ) often involve data transformation that converts 
relatively noisy individual gene expression information into 

gene module scores ( 76–80 ). By leveraging information from 

correlated gene modules, JMnorm may provide a more ac- 
curate representation of cells or meta cells in different gene 
module spaces across various cell groups, conditions, or time 
points. 

Because JMnorm normalizes data by leveraging informa- 
tion from functionally correlated datasets, higher correlations 
among the features can result in better improvements with 

normalization. To help users more effectively select features 
with high correlations for JMnorm analyses, we computed 

pairwise cross-feature correlations for 538 epigenetic features 
in K562 cells using data from the ENCODE Consortium ( 1 ,2 ) 
( Supplementary Figure 14 A). Considering the substantial size 
of the output correlation matrix and the difficulties with visu- 
alization, we also set up a Shiny app ( 81 ) visualization tool for 
convenient and interactive exploration of the correlation ma- 
trix ( Supplementary Figure 14 B and Supplementary Table 3 ). 

Lastly, we would like to point out a potential limi- 
tation: JMnorm might not be able to adequately han- 
dle global changes across all functionally correlated fea- 
tures under certain conditions. This could result in los- 
ing some global changes at the within-cluster quantile 
normalization step. For these scenarios, other normal- 
ization strategies that take into account global changes,
such as normalization using only common background re- 
gions ( 21 ) or a spike-in reference ( 71 ,72 ), may be more 
appropriate. 

In summary, JMnorm introduces a novel approach for 
multi-feature normalization of epigenetic data. This method 

has a straightforward design and is effective in reducing tech- 
nical biases and preserving cross-feature correlations across 
different cell types. With the continuing development of high- 
throughput sequencing technologies for genome interrogation 

and the growing number of epigenetic datasets generated in 

different cell types, species, and under various physiological 
conditions, we anticipate JMnorm becoming a crucial tool 
for data normalization in integrative and comparative epige- 
nomics studies. 

Data availability 

The JMnorm package is available at GitHub ( https:// 
github.com/ camp4tx/ JMnorm ) and Zenodo ( https://doi.org/ 
10.5281/zenodo.10119105 ) and released under GNU General 
Public License, version 2.0 or later. The main part of JMnorm 

was implemented in R. We also provided a conda environment 
that can be deployed in both MacOS and Linux operating sys- 
tems. The signal tracks used in this project were mainly down- 
loaded from VISION project data portal ( https://usevision. 
org/ data/ ) and the EpiMAP repository ( https://epigenome. 
wustl.edu/ epimap/ data/ ). The detailed cell types included in 

each cell type group in the EpiMAP data can be found in the 
EpiMAP metadata file ( https://personal.broadinstitute.org/ 
cboix/ epimap/ metadata/ Short _ Metadata.html). Human and 

mouse cCRE lists were downloaded from ENCODE-SCREEN 

data portal ( https:// screen.encodeproject.org/ ) ( 82 ). The list 
of links for the files used in this paper can be found in 

Supplementary Table 1 . 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
https://github.com/camp4tx/JMnorm
https://doi.org/10.5281/zenodo.10119105
https://usevision.org/data/
https://epigenome.wustl.edu/epimap/data/
https://personal.broadinstitute.org/cboix/epimap/metadata/Short_Metadata.html
https://screen.encodeproject.org/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1146#supplementary-data
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