JMnorm: a novel method for Joint Multi-feature normalization of epigenomic data

Guanjue Xiang, Yuchun Guo and David Bumcrot

CAMP4 Therapeutics Corp., Cambridge, MA, USA

## **Motivations:**

- Chromatin features provide important information in integrative and comparative epigenomic studies and exhibit correlated relationships.
- Robust normalization methods are required for comparison of epigenomic data between replicates and different cell types.
- Existing normalization methods ignore cross-feature correlations and are 3. inadequate for highly variable signal distributions that exist in different cell types.

### **Method Overview:**

#### (A) JMnorm better preserves cross-feature correlations





**(B)** JMnorm improves signal consistency between biological replicates



predictions across cell types





·AP4

- Transform multi-dimension epigenomic signal matrices into orthogonal Principal Component (PC) spaces
- Generate reference cCRE clusters based on reference data in PC space
- Assign target cCRE into reference clusters based on target data in PC space
- Within each cluster in PC space, apply quantile normalization to normalize target data against reference data
- Reconstruct JMnorm target signal matrix by transforming the normalized target signal in PC space back to the original signal space

# **Performance evaluation relative to existing** normalization methods:

### (D) JMnorm allows different number of peaks across cell types and identifies **CTCF** peaks that are significantly enriched at TAD boundaries and YY1 peaks



A. JMnorm better preserves cross-feature correlations B. JMnorm **improves signal consistency** between biological replicates C. JMnorm improves cross-cell RNA-seq predictions D. JMnorm allows different numbers of peaks across cell types and identifies CTCF peaks that are more enriched at topologically associating domain (TAD)

**boundaries and YY1 transcription factor binding sites** 

©2023