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Microglia are the resident immune cells in the brain that play a key role in driving neuroinflammation, 
a hallmark of neurodegenerative disorders. Inducible microglia‑like cells have been developed as an 
in vitro platform for molecular and therapeutic hypothesis generation and testing. However, there 
has been no systematic assessment of similarity of these cells to primary human microglia along 
with their responsiveness to external cues expected of primary cells in the brain. In this study, we 
performed transcriptional characterization of commercially available human inducible pluripotent 
stem cell (iPSC)‑derived microglia‑like (iMGL) cells by bulk and single cell RNA sequencing to assess 
their similarity with primary human microglia. To evaluate their stimulation responsiveness, iMGL 
cells were treated with Liver X Receptor (LXR) pathway agonists and their transcriptional responses 
characterized by bulk and single cell RNA sequencing. Bulk transcriptome analyses demonstrate 
that iMGL cells have a similar overall expression profile to freshly isolated human primary microglia 
and express many key microglial transcription factors and functional and disease‑associated 
genes. Notably, at the single‑cell level, iMGL cells exhibit distinct transcriptional subpopulations, 
representing both homeostatic and activated states present in normal and diseased primary microglia. 
Treatment of iMGL cells with LXR pathway agonists induces robust transcriptional changes in lipid 
metabolism and cell cycle at the bulk level. At the single cell level, we observe heterogeneity in 
responses between cell subpopulations in homeostatic and activated states and deconvolute bulk 
expression changes into their corresponding single cell states. In summary, our results demonstrate 
that iMGL cells exhibit a complex transcriptional profile and responsiveness, reminiscent of 
in vivo microglia, and thus represent a promising model system for therapeutic development in 
neurodegeneration.
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Microglia are the primary resident immune cells in the brain. Derived from a myeloid lineage, microglia fulfill 
critical roles in immune surveillance and phagocytosis of cells and debris caused by injury, disease, and  aging1. 
Additionally, microglia play important roles in neuronal homeostasis by regulating synaptogenesis and synaptic 
 pruning2. Dysregulation of microglial functions are heavily implicated in neurodegenerative disorders including 
Alzheimer’s disease (AD)3,4 and Parkinson’s disease (PD)5. Thus, studying the role of microglia in neurodegenera-
tive disorders is essential for developing effective therapies.

Currently, it is untenable to purify sufficient amounts of ex vivo human microglia from brain tissue to perform 
multifaceted experiments. Additionally, microglia isolated from brain tissue undergo rapid transcriptomic and 
phenotypic changes when transferred to in vitro  conditions6. These challenges have facilitated the development 
of protocols to differentiate iPSCs into iMGL  cells7–12. These protocols transition iPSCs through hematopoietic 
precursor cells (HPCs), erythro-myeloid progenitors (EMPs), and finally into iMGL cells in  culture13. Alterna-
tively, HPCs can be transplanted into early postnatal mouse brain where they develop into  microglia14–16. These 
xenotransplant microglia (xMG) more closely resemble the transcriptomic profile of ex vivo microglia than 
iMGL cells, however they are difficult to produce at large scale.

The goal of this study is to assess commercially available iMGL cells, from Fujifilm Cellular Dynamics, Inc. 
(Commercial iMGL cells), as a platform for functional studies and target discovery in neurodegeneration. To 
characterize transcriptional and cellular heterogeneity of Commercial iMGL cells in comparison to primary 
human microglia, we performed single-cell and bulk RNA sequencing of iMGLs cells and compared results with 
a number of publicly available transcriptomic data. Then, to assess transcriptional responsiveness of different 
iMGL cell subpopulations to known neuroprotective agents, we treated Commercial iMGL cells with two LXR 
pathway  agonists17–19.

Methods
Cell culture
Cell culture was performed as described  previously12 with modifications as described below. iPSC-derived micro-
glia were obtained from FujiFilm Cellular Dynamics, Inc. (clone01279.107, lot 105093 and lot 105887). Cells were 
thawed at 37 °C. Each vial was rinsed with 1 mL of culture medium (Table 1) and spun at 1000×g for 10 min. Cells 
were transferred to 8 mL of culture medium and plated at a density of 5 ×  104 cells/cm2 in a plate format based on 
the cell input requirements for a given experiment. Specifically, 6-well format for single-cell and 48-well format 
for bulk RNA-seq experiments. Cells were grown between 0 and 4 days in culture based on the recommended 
3 day recovery period from cryopreservation (FujiFilm Cellular Dynamics, Inc.).

Immunostaining
Cells were plated on a black glass bottom 96-well plate at a density of ~ 30,000 cells/cm2. On Day 8, cells were 
washed with 1× phosphate buffered solution (PBS) and fixed with 4% paraformaldehyde in PBS for 15 min at 
room temperature. Permeabilization of the cells was done with 1× PBS containing 0.25% Triton™X-100. Following 
1 h blocking in 1× PBS with 5% goat serum and donkey serum at room temperature, primary rabbit anti-IBA1 
(Abcam plc, Cat. No. ab178846; 1:1000), rabbit anti-TREM2 (Cell Signaling, Cat. No. D8I4C; 1:200), and rabbit 
anti-P2Y12 (Thermo Fisher Scientific Inc, Cat. No. 4H5L19; 1:100) antibodies were added in the blocking solution 
and incubated at 4 °C overnight. The next day, cells were washed 3 times with PBS for 5 min and stained with 
donkey anti-rabbit Alexa  Fluor® conjugated secondary antibody (Thermo Fisher Scientific Inc., Cat. No. A-21206) 

Table 1.  Composition of culture medium.

Culture media component Concentration Volume (mL) per 100 mL of media Vendor

Dulbecco’s Modified Eagle Medium (DMEM)/F-12 HEPES, no 
phenol red 93.3 Thermo Fisher Scientific

N-2 Supplement 100× 0.5 Thermo Fisher Scientific

B-27™ Supplement 50× 1 Thermo Fisher Scientific

10% BSA in DPBS 0.5 MilliporeSigma

1-Thioglycerol 11.5 M 0.004 MilliporeSigma

Ascorbic acid 20 mg/mL 0.25 MilliporeSigma

Penicillin–streptomycin 1 Thermo Fisher Scientific

GlutaMAX® Supplement 1 Thermo Fisher Scientific

MEM Non-essential Amino Acids 100× 1 Thermo Fisher Scientific

Insulin-Transferrin-Selenium 100× 1 Thermo Fisher Scientific

Human Insulin Solution 0.05 MilliporeSigma

Recombinant Human M-CSF Protein (rhM-CSF) 100 μg/mL 0.025 PeproTech

Recombinant Human TGF beta 1 protein (rhTGFb1) 100 μg/mL 0.05 R&D Systems

Recombinant Human IL-34 (rhIL-34) 100 μg/mL 0.1 PeproTech

Recombinant human Fractalkine (rhFractalkine) 100 μg/mL 0.1 PeproTech

Recombinant human CD200 (rhCD200) 100 μg/mL 0.1 Acro Biosystems
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at 1:500 for 1 h at room temperature in the dark. After secondary antibody staining, cells were washed 3 times 
with PBS and imaged on a  Zeiss® LSM 710 microscope. Images were segmented and quantified using CellProfiler™.

RNA isolation, cDNA synthesis, and bulk RNA sequencing library preparation
For bulk RNA sequencing experiments, medium was removed and cells were lysed directly on plate in RNA 
lysis buffer and processed using the  MagMAX® mirVana Total RNA Isolation Kit (Thermo Fisher Scientific Inc., 
Cat. No. A27828) according to the manufacturer’s instructions. cDNA was generated from total RNA using 
 SuperScript® IV Reverse Transcriptase (Thermo Fisher Scientific Inc., Cat No. 18090050). Bulk RNA-seq library 
preparation was performed with 500 ng of total RNA using the  NEBNext® Poly(A) mRNA Magnetic Isolation 
Module (New England Biolabs, Inc., Cat. No. E7490) and  NEBNext® Ultra™ Directional RNA Library Prep Kit 
for  Illumina® (New England Biolabs, Inc., Cat. No. E7420). All libraries were dual-indexed using 12 cycles of 
PCR amplification using  NEBNext® Multiplex Oligos for  Illumina® Dual Index Primer Set (New England Biolabs, 
Inc., Cat. No. E7600). Library quality control was performed by measuring concentration with  Qubit® dsDNA 
HS Assay Kit (Thermo Fisher Scientific Inc., Cat. No. Q32854) and fragment size distribution with the  Agilent® 
High Sensitivity DNA Kit (Agilent Technologies, Inc., Cat. No. 5067-4626). Libraries were sequenced as paired-
end 150 × 150 bp on a  NovaSeq® 6000 System (Illumina, Inc.).

Single cell RNA‑sequencing library preparation
Single cell experiments were performed in parallel with the bulk RNA-seq experiments described above. Cells 
were first washed with PBS, then trypsinized for 10 min at 37 °C using  TrypLE®Express Enzyme (Thermo Fisher 
Scientific Inc., Cat. No. 12604013). Trypsinization was halted by the addition of equal volume of warm medium, 
cells were spun at 1000×g for 10 min and resuspended in 0.04% PBS/bovine serum albumin (BSA). Trypan blue 
was used to assess cell number and viability (> 85% in all cases, typically > 90%) using a  Cellometer® automated 
cell counter (Nexcelcom Bioscience, LLC). Gel bead-in-emulsion (GEM) encapsulation and single cell indexing 
reactions were performed using a Chromium™ Controller instrument (10× Genomics, Inc., Cat. No. 1000202, 
version 3.1 chemistry). Single-cell 3’ RNA-seq libraries were prepared using the Chromium™ Next GEM Single 
Cell 3’ GEM, Library and Gel Bead Kit (10× Genomics, Inc., Cat. No. 1000121), according to the manufacturer’s 
instructions, specifically targeting 2–3000 cells per replicate and 13 rounds of PCR amplification. Technical 
replicates were processed independently from trypsinization through sequencing (cells thawed together then 
plated in independent wells). Libraries were sequenced on a  NovaSeq® 6000 System, with paired end 150 × 150 bp 
sequencing.

LXR agonist treatment
Cells were plated at 150,000 cells per well on 24-well plates in culture medium. After 24 h at 37 °C, medium was 
replaced with fresh medium. At day 3, cells were treated with either dimethyl sulfoxide (DMSO) or different doses 
(30 nM or 100 nM) of T0901317 (MedChemExpress LLC, Cat. No. HY-10626) and GW3965 (30 nM or 300 nM) 
(MedChem Express LLC, Cat. No. HY-10627A) and incubated for 24 h. After 24 h, medium was discarded, and 
cells were directly lysed on the plate for RNA extraction using the  MagMax® mirVana Total RNA Isolation Kit. 
Bulk and single cell RNA sequencing were performed as described above.

Time course bulk RNA‑seq processing
FastQ files were downloaded from 5 external datasets of microglia related  samples6,14,15,20,21 (Accession num-
bers—Gosselin: dbGaP phs001373.v2.p2, Olah: Synapse syn11468526, Galatro: GEO GSE99074, Hasselmann: 
GEO GSE133432, Svoboda: GEO GSE139194). Samples were removed with less than 10,000,000 reads. FastQ 
files were processed through a uniform RNA-sequencing pipeline. Briefly, reads were aligned to the hg38 genome 
with STAR 22 and RSEM was  used23 to quantify the expression of genes in transcripts per million (TPM) using 
Gencode annotation version  2424. Samples were removed with less than 60% alignment rate after mapping. For 
external datasets downloaded from literature sources, paired-end samples were removed with greater than 50% 
duplicate read fraction after mapping. Ribosomal and mitochondrial genes were removed, those that start with 
“RP” or “MT”. Gene expression values were transformed into log2 (TPM + 0.01) to stabilize the variance. This 
dataset was used for the assessment of progenitor and monocyte markers. For principal components analyses 
(PCA) and the assessment of key transcription factors (TFs), marker genes, and disease genes, lowly expressed 
genes with a median TPM < 1 were removed, leaving a dataset of 12,392 genes.  ComBat25 was used to correct for 
batch effects using the dataset source as the correction factor.

Principal components analysis
The set of all expressed genes was used as features to run PCA. Before running PCA, the expression levels of 
each gene were scaled across samples by subtracting the mean value and dividing by the standard deviation. 
PCA was run using the prcomp function in R. For the quantitative comparison in Fig. 1D, Euclidean distances 
were calculated between all pairs of samples using their loadings on PC1 and PC2 with the pdist function in R.

Statistical comparison of cell sources using PCA
For the statistical analysis in Supplementary Fig. 3, PCA was run separately across all pairs of cell sources. For 
each independent pair, meaningful principal components (PCs) were identified which explained a greater pro-
portion of variance than random noise. One hundred permutated datasets were created by randomly shuffling 
sample labels for each gene and the variance explained by the top PC in each permutated dataset was calculated. 
A threshold for variance explained by meaningful PCs was defined as 2 standard deviations above the mean value 
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Figure 1.  Gene expression comparison between Commercial iMGL cells and microglia-related datasets. (A) 
Representative immunofluorescence images of Commercial iMGL cells stained with IBA1 or P2Y12 (green) 
and DAPI (blue). The scale bar represents 20 μm. (B) This study performed bulk and single cell transcriptional 
profiling of Commercial iMGL cells between 0 and 4 days in culture. (C) PCA clustering using top 2 PCs for 
Commercial iMGL cell samples and microglia comparator datasets. Variance explained by each principal 
component is shown in parenthesis. (D) Euclidean distances for all pairs of samples between ex vivo microglia 
and each of the other microglia groups. Euclidean distances were calculated using sample loadings on PC1 and 
PC2. (E) Comparison of gene expression levels for key microglia TFs, core marker genes, and disease risk genes 
between Commercial iMGL cells at Days 1–4 and ex vivo microglia. Expression levels displayed are the median 
values across samples. (F) Comparison of gene expression levels for HPC and EMP progenitor and monocyte 
markers between Commercial iMGL cells at Days 1–4, ex vivo microglia, and monocytes. Expression levels 
displayed are the median values across samples.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2153  | https://doi.org/10.1038/s41598-024-52311-0

www.nature.com/scientificreports/

for the top component across the 100 permuted datasets. Sample loadings on the meaningful PCs were used to 
quantitatively access separability for the pair of datasets using 2 methods:  SigClust26 and  Silhouette27. The SigClust 
score was calculated using the sigclust package in R. The Silhouette score was calculated using the cluster package 
in R. One hundred permuted datasets were generated by shuffling the sample labels for the meaningful PCs and 
re-running the 2 methods. For each method, an empirical p-value was calculated to assess the significance of 
dataset separability by identifying the proportion of permutated datasets with a larger separability score then the 
actual score. In the case of Sigclust, this was the proportion of permutated datasets with a lower score, because 
lower SigClust scores correspond to greater separability. For Silhouette, this was the proportion of permutated 
datasets with a higher score, because higher Silhouette scores correspond to greater separability.

Time course single cell RNA‑seq processing
FastQ files for each single cell RNA-seq sample were processed using Cell Ranger (10× Genomics, Inc.) to gen-
erate count matrices of genes per cell. Count matrices were processed for downstream analyses using Seurat 
version 3.228. Low quality cells were removed, potentially empty droplets or doublets by imposing the following 
filtering criteria for each cell: number of genes detected > 1500, number of reads per cell < 100,000, and mito-
chondrial RNA (mtRNA) fraction < 20%. We also filtered any genes that were detected in less than 3 individual 
cells. This left us with a dataset of 18,426 genes across 31,984 cells collectively. Gene expression values were 
log-transformed using the NormalizeData function and the top 2000 variable genes were identified using the 
FindVariableFeatures function. Expression levels for each gene were scaled and centered using the ScaleData 
function. Louvain clustering was performed with the top 20 principal components using the FindNeighbors 
and FindClusters functions with a resolution parameter of 0.4. For visualization, the variance across the top 20 
principal components was reduced into 2 Uniform Manifold Approximation Projection (UMAP) dimensions 
using the RunUMAP function. For cells in each cluster, preferentially expressed marker genes were identified 
using the FindAllMarkers function with the following criteria: adjusted Wilcox p-value < 0.01, detected percent-
age > 40%, and  log2(fold-change) > 0.6. GO enrichment analyses was performed for the marker gene sets using 
the clusterProfiler package in  R29.

Single cell RNA‑seq integration analysis
Single cell RNA-seq integration was performed on the time course dataset with two ex vivo microglia  datasets30,31 
using Seurat version 4.332. The cell by gene count matrices and cell cluster identities were downloaded for each 
dataset (Olah: https:// github. com/ vilas menon/ Micro glia_ Olah_ et_ al_ 2020, Sankowski: https:// github. com/ rsank 
owski/ sanko wski- et- al- micro glia) and loaded into separate Seurat objects. Prior to integration, for each dataset, 
gene expression values were normalized, and the top 2000 variable genes were identified as described above. 
Data integration was performed using the functions SelectIntegrationFeatures and FindIntegrationAnchors. 
For visualization, the variance across the top 30 principal components was reduced into 2 UMAP dimensions 
as described above.

LXR agonist treatment bulk RNA‑seq processing
FastQ files were processed as described above. Differential gene expression analysis was run using the DESeq2 
package in  R33. The DESeq function was used to perform median of ratios normalization of the count data. 
Four contrasts were run: GW3965 30 nM vs DMSO, GW3965 300 nM vs DMSO, T0901317 30 nM vs DMSO, 
and T0901317 100 nM vs DMSO. To identify DEGs, the following criteria were used: absolute value of  log2 fold 
change > 0.6, adjusted p-value < 0.05, and the maximum TPM value across samples > 1. The enrichR package in 
 R34 was used to run pathway enrichment analysis. For each contrast, both up- and downregulated DEGs were 
mixed and run against public databases including KEGG_2019_Human, GO_Biological_Process_2018 and Reac-
tome_2016. The significance of the enrichment and overlapping genes were generated by the enrichr function 
for each pathway. Significantly enriched pathways were identified with an adjusted p-value < 0.05.

LXR agonist treatment single cell RNA‑seq processing
FastQ files were processed as described above. After filtering of low quality cells, we started with a dataset of 
19,517 genes in 43,312 cells, collectively. Data normalization and clustering were performed as described above, 
expect we used a resolution parameter of 0.2 for Louvain clustering. For each of the 4 contrasts, DEGs were 
identified in each cluster using the FindAllMarkers function with the following criteria: absolute value of  log2 
fold change > 0.6, adjusted Wilcox p-value < 0.05, and percentage of detected cells > 10%. Pathway enrichments 
were identified as described above.

Results
Comparison of Commercial iMGL cell bulk transcriptome data with publicly available primary 
microglia‑related datasets
We verified expression of microglia markers IBA1, P2Y12, and TREM2 on Commercial iMGL cells by immu-
nostaining (Fig. 1A and Supplementary Fig. 1) and quantified > 99% of cells as positive for each marker (“Meth-
ods”). Bulk RNA sequencing was performed on cells grown between 0 and 4 days in culture (Fig. 1B and “Meth-
ods”). As comparator datasets, we collected published bulk RNA sequencing data from five  studies6,14,15,20,21, 
encompassing three human primary microglia datasets (ex vivo), two alternative iMGL cell datasets, two xMG 
datasets, one in-vitro cultured human primary microglia dataset, and one human ex vivo monocyte dataset 
(Supplementary Table 1). For all RNA sequencing samples, we started with FastQ files, processed them using a 
uniform pipeline, and performed batch correction to minimize sources of technical variation between datasets 
(“Methods” and Supplementary Fig. 2). We noticed that Commercial iMGL samples from day 3 have higher 

https://github.com/vilasmenon/Microglia_Olah_et_al_2020
https://github.com/rsankowski/sankowski-et-al-microglia
https://github.com/rsankowski/sankowski-et-al-microglia


6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2153  | https://doi.org/10.1038/s41598-024-52311-0

www.nature.com/scientificreports/

duplicate read ratios than samples from the other days (Supplementary Table 1), indicative of technical differ-
ences in these samples during library preparation.

To assess genome-wide patterns in gene expression, we conducted principal components analysis (PCA) 
with all expressed genes. We found that xMG and Commercial iMGL cell samples are more closely related to 
ex vivo microglia than alternative iMGL cells, in vitro cultured microglia, and monocytes by visual (Fig. 1C) 
and quantitative (Fig. 1D) comparisons using the top two principal components (PCs). We also examined two 
different similarity metrics, SigClust and Silhouette index, with all PCs above noise, which has been determined 
by permutation tests (“Methods”). The overall similarity was observed in both metrics used (Supplementary 
Fig. 3). These results demonstrate that the overall expression profile is similar between ex vivo microglia and 
Commercial iMGL cells.

Next, we compared the expression of key microglia  TFs35, core marker genes associated with microglia 
 functions36, and AD risk  genes37 between the datasets. We found the expression of most TFs, marker genes, and 
disease genes to be similar between ex vivo microglia and Commercial iMGL cells (Fig. 1E and Supplementary 
Fig. 4). However, there are differences including lower expression of SALL1 and higher expression of SPP1 in 
Commercial iMGL cells. Loss of SALL1 expression and increase in SPP1 expression have been associated with 
an increase in inflammation and phagocytic activity in mouse  microglia38,39, suggesting that Commercial iMGL 
cells might have an elevated level of microglial activation. We also assessed the expression of iPSC, HPC, and 
EMP marker genes as well as monocyte enriched marker  genes21,40 (Fig. 1F and Supplementary Fig. 4). We found 
moderate expression of monocyte markers as well as multiple progenitor markers including HBE1, GATA1, 
GATA2, GYPA, MYB, and KIT, suggesting the presence of a progenitor subpopulation within the Commercial 
iMGL cell culture. Taken together, these results demonstrate that Commercial iMGL cells largely recapitulate 
the basal transcriptional profile of ex vivo microglia.

Single cell transcriptomics identifies multiple subpopulations of cells within Commercial iMGL 
cells
Microglia exhibit a variety of transcriptional states in response to the local  environment31,35. These states are 
indicative of individual microglia performing different roles including surveillance and neuronal homeostasis 
(homeostatic microglia) as well as inflammatory response and phagocytosis (activated microglia). To character-
ize the heterogeneity of Commercial iMGL cells in culture, we performed single-cell RNA sequencing on cells 
grown between 0 and 4 days in culture (Fig. 1B and “Methods”). After removing low quality cells (Supplementary 
Fig. 5), we generated a dataset of 31,984 cells. Using de novo clustering, we identified 11 clusters of cells within 
Commercial iMGL cell cultures (Fig. 2A and Supplementary Data 1). To assign functional states for each cluster, 
we assessed the expression patterns of genes, from a single cell study of human primary microglia, that mark 
important aspects of microglial biology including antigen presentation, complement pathway, immune activation, 
and cell  cycle31 (Fig. 2B and Supplementary Fig. 6). Additionally, we generated gene ontology enrichments of 
differentially expressed cluster marker genes (“Methods”, Supplementary Table 2, and Supplementary Figs. 7, 8). 
We identified 4 clusters, C1, C3, C7, and C10, indicative of homeostatic microglia with high expression of genes 
involved in antigen presentation and complement pathways. We identified 5 clusters, C2, C4, C5, C8, and C9, 
indicative of activated microglia with high expression of immune related genes. Among activated microglia, 2 
clusters, C2 and C5, have high expression of immediate-early genes which are rapidly induced upon  stimulation41. 
Among homeostatic and activated microglia, we identified 3 clusters of proliferating cells, C3, C7, and C9 with 
high expression of cell cycle genes. In concordance with bulk expression patterns (Fig. 1F), we identified 1 cluster, 
C11, corresponding to myeloid progenitors (Supplementary Fig. 9). Reassuringly, the proportion of total cells 
within C11 is less than one percent (Fig. 2C), demonstrating the low prevalence of incompletely differentiated 
cells. Of note, AD risk genes were differentially expressed across clusters (Supplementary Fig. 10), supporting 
the roles of multiple microglia functions and pathways in the etiology of  AD42.

We directly compared the single cell transcriptomes of Commercial iMGL cells with two ex vivo microglia 
single cell RNA-seq  datasets30,31 (“Methods”). The two ex vivo datasets integrate tightly together, with the Com-
mercial iMGL cells located around the periphery (Fig. 2D). On the UMAP projection, functionally similar ex vivo 
and Commercial iMGL cell clusters have some intermixing (Fig. 2D and Supplementary Fig. 11). Activated Com-
mercial iMGL clusters C2 and C8 are overlapping with activated ex vivo clusters Olah-5, Olah-6, Sankowski-1, 
and Sankowski-9. Proliferative Commercial iMGL clusters C3 and C7 are overlapping with proliferative ex vivo 
cluster Olah-9. These results demonstrate that Commercial iMGL cell clusters recapitulate the diverse cellular 
states of ex vivo microglia. The Commercial iMGL cell cluster transcriptional profiles closely resemble, but are 
not equivalent to, those of ex vivo microglia.

The proportion of cells within each cluster was dynamic over the 4-day time course (Fig. 2C). One cluster, C6, 
with high expression of homeostatic and activated marker genes (Fig. 2B), was only present at D0 and indicative 
of freshly thawed cells. The proportion of homeostatic microglia in cluster 1, those not expressing proliferating 
markers, increased over time in culture from 15% of cells at day 1 to 35% of cells at day 4. In contrast, the pro-
portion of proliferative homeostatic microglia in cluster C3 was relatively stable between 1 and 4 days in culture. 
The proportion of activated microglia in cluster C4, those not expressing immediate-early genes, increased 
over time in culture from 5% at day 1 to 30% at day 4, while the proportion of activated microglia expressing 
immediate-early genes in cluster C2 decreased over time in culture from 40% at day 1 to 10% at day 4. Overall, 
the proportion of microglia subpopulations changes substantially over time in culture, approaching steady state 
between days 3 and 4.
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Figure 2.  Single cell RNA-seq profiling of Commercial iMGL cell cultures. (A) Identification of 11 cellular 
clusters in Commercial iMGL cell cultures. Functional annotations were assigned based on the expression 
of microglia functional marker genes as described in the “Methods” and shown in (B). (B) Gene expression 
heatmap of selected microglia functional marker genes in the time course single cell RNA-seq dataset. Heatmap 
with a more comprehensive list of marker genes is shown in Supplementary Fig. 6. (C) Proportion of cells in 
each cluster in the time course single cell RNA-seq dataset. (D) Integration of Commercial iMGL single cell 
RNA-seq dataset with two published ex vivo microglia single cell RNA-seq datasets (Olah and Sankowski).
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Robust bulk transcriptional response of Commercial iMGL cells to LXR pathway agonists
To assess the transcriptional responsiveness of Commercial iMGL cells, we selected two structurally distinct LXR 
pathway agonists: T0901317 and GW3965 (Fig. 3A)43,44. LXRs are lipid responsive TFs that form heterodimers 
with retinoid X receptors (RXRs) to regulate expression of key cholesterol homeostatic genes involved in  AD45. 
In microglia, LXR agonists repress microglial activation by inhibiting nitric oxide production and nuclear factor-
kappa B  activity46,47. LXR agonists are potential therapeutic targets for neurodegenerative disorders and have 
previously been shown to reduce amyloid plaque burden, ameliorate neuroinflammation, and improve memory 
in preclinical AD  models17–19.

We treated Commercial iMGL cells with each LXR agonist starting on day 3 of in vitro culture and performed 
bulk RNA sequencing to assess their transcriptional responses 24 h later (“Methods” and Supplementary Table 3). 
We selected two doses of each compound to evaluate the consistency of responses across a dose curve which is an 
important aspect of developing a transcriptomic  bioassay48,49. We found a marked increase in expression of the 
established LXR pathway target  genes50 ABCA1, ABCG1, and APOE (Supplementary Fig. 12). We systematically 
identified differentially expressed genes (DEGs) for each treatment (“Methods”). We identified 296, 677, 227, 
and 538 DEGs for GW3965 30 nM, GW3965 300 nM, T0901317 30 nM, and T0901317 100 nM, respectively 
(Supplementary Table 4). In all four stimulus conditions, ABCA1 and ABCG1 were among the most highly 
upregulated genes, as expected with stimulation of the LXR pathway (Fig. 3B,C and Supplementary Fig. 13). 
Additionally, for both compounds, the expression level of DEGs was dose-dependent, and almost all the DEGs 
identified at the lower dose were also identified at the higher dose (Supplementary Fig. 14). Comparing between 
the two compounds, we found highly overlapping lists of DEGs (Fig. 3D) and high concordance in gene fold 
changes (Supplementary Fig. 15), suggesting that both compounds are modulating the same cellular pathways. 
We ran gene ontology and pathway enrichments for the DEGs identified in each of the 4 stimulus conditions 
(Supplementary Tables 5–8). We found similar pathway enrichments in both compounds with upregulated genes 
enriched in lipid metabolism processes and downregulated genes enriched in cell cycle, extracellular matrix, 
and inflammatory processes (Fig. 3E,F). Overall, Commercial iMGL cells exhibited robust bulk transcriptional 
responses to LXR agonists.

Differential transcriptional responses to LXR pathway agonists across Commercial iMGL cell 
subpopulations
To assess changes in subpopulation abundances and cell-to-cell heterogeneity in transcriptional responses of 
Commercial iMGL cells to LXR pathway agonists, we performed single cell RNA sequencing (“Methods”). After 
removing low quality cells (Supplementary Fig. 16), we generated a dataset of 43,312 cells. Using Louvain clus-
tering, we identified 6 clusters of cells (Fig. 4A and Supplementary Data 2) and matched their identities to the 
previously identified Commercial iMGL cell subpopulations (Fig. 2A) using a set of microglia functional marker 
 genes31 (Supplementary Fig. 17). In general, the subpopulation abundances are unchanged between untreated and 
LXR agonist treated samples (Fig. 4B). There is a slight reduction in the proportion of proliferative homeostatic 
cells in cluster C3 which is consistent with the finding that downregulated genes in bulk RNA-seq are enriched 
within the cell cycle pathway (Fig. 3E,F).

We identified LXR agonist induced DEGs for each cluster (“Methods”, Supplementary Fig. 18, and Supple-
mentary Table 9). First, we compared the DEG responses between high and low doses for each treatment within 
the same cluster. In general, fold change differences correlate with dose for each treatment (Supplementary 
Fig. 19). We noticed that clusters C1, C3, and C4 show higher correlations between doses than cluster C2, C8, 
and C10, for both treatments, suggesting that Commercial iMGL cell subpopulations have differing sensitivities 
to LXR agonists. Comparing between the two compounds, we found highly overlapping lists of DEGs within each 
cluster (Supplementary Fig. 20), and similar gene ontology and pathway enrichments (Supplementary Table 10).

Next, we compared the responses between bulk and single cell RNA-seq to evaluate the performance of the 
two technologies in identifying LXR agonist induced DEGs. In general, the gene expression changes detected 
by bulk and single cell analysis are quite similar (cor = 0.7–0.81). However, there are many genes that exhibit dif-
ferences in fold-changes between the two technologies (Supplementary Fig. 21). The number of DEGs is greater 
in bulk as compared to single cell, however there is substantial overlap between the two methods (Fig. 4C,D 
and Supplementary Fig. 22). We found that DEGs detected by bulk only exhibit lower expression levels in the 
single cell RNA-seq dataset when compared to DEGs detected by both methods (Supplementary Fig. 23). This 
finding is consistent with previous reports showing that identification of lowly expressed DEGs by single cell 
analysis is  challenging51.

Finally, we compared the DEG responses for the high dose of each compound between the four major clusters 
C1, C2, C3, and C4. Between clusters, the gene expression responses were positively correlated, however the fold 
change extents were different (Supplementary Fig. 24). We found that the transcriptional response in cluster 
1 was more comparable to cluster 3 (cor = 0.74–0.77) than cluster 2 and cluster 4 (cor = 0.52–0.64), which sup-
port our previous characterization of C1/C3 and C2/C4 as representing homeostatic and activated microglia, 
respectively. We compared the set of DEGs across different clusters in each treatment and found substantial 
differences in DEGs across clusters, with a particular emphasis on a large number that are specific to cluster C4 
after GW3965 300 nM (Fig. 4E,F) and T0901317 100 nM treatments (Supplementary Fig. 25). One example of a 
gene with differential transcriptional responses across clusters is ACSL1. The expression of ACSL1 is upregulated 
in cluster C4 (FC = 3.16–3.38), in response to both compounds, whereas its expression is unchanged in clusters 
C1, C2 and C3 (FC = 1.11–1.42) (Fig. 4G,H). ACSL1 is significantly upregulated in bulk RNA-seq (FC = 2.6–2.75) 
(Supplementary Table 4), and the single cell dataset demonstrates that the bulk RNA-seq change in ACSL1 is 
predominantly driven by activated microglia cells in cluster C4. Similarly, we sorted the full list of bulk DEGs 
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Figure 3.  Bulk transcriptional responses of Commercial iMGL cells to LXR agonist treatment. (A) Chemical 
structures of LXR pathway agonists GW3965 and T0901317. (B) Volcano plot showing relationship between 
expression fold change and significance for differential gene expression between GW3965 300 nM and DMSO 
treated cells. Genes with significant upregulation and downregulation in GW3965 300 nM are colored red 
and blue, respectively. (C) Volcano plot showing relationship between expression fold change and significance 
for differential gene expression between T0901317 100 nM and DMSO treated cells. Genes with significant 
upregulation and downregulation in T0901317 100 nM are colored red and blue, respectively. (D) Overlap in 
DEGs between GW3965 300 nM and T0901317 100 nM treatments. (E) Selected pathway enrichments for 
DEGs with GW3965 300 nM treatment. (F) Selected pathway enrichments for DEGs with T0901317 100 nM 
treatment.
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into their corresponding single cell clusters (Supplementary Table 11). These findings demonstrate that different 
subpopulations of iMGL cells exhibit heterogeneous transcriptional responses to LXR agonists.

Discussion
Microglia play important roles in the pathogenesis of neurodegenerative disorders. A substantial increase in 
neuroinflammation mediated by microglial activation and proliferation is a hallmark of late stage neurodegen-
erative disorders including AD, PD, and frontotemporal  dementia52. Two of the most prominent genetic risk 
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factors for late onset AD, APOE and TREM2, are highly expressed in microglia and are important regulators of 
cholesterol metabolism and transport in the  brain53. Therefore, in vitro models, such as iMGL cells, are essential 
tools for preclinical development. Multiple studies have shown that iMGL cells have transcriptional profiles 
that are highly similar to ex vivo  microglia12,15,54–58. In this study, we find that iMGL cells, from Fujifilm Cellular 
Dynamics, Inc., are an attractive commercial option.

Currently, multiple therapeutics targeting APOE and TREM2 in microglia are in development for  AD59–61, 
including LXR pathway  agonists62. This is the first study to perform a comprehensive bulk and single cell tran-
scriptional characterization of LXR agonists on iMGL cells. At the bulk level, we find an upregulation of lipid 
metabolism pathways, consistent with previous findings that positive effects of LXR agonists on AD pathology 
in preclinical models are largely due to the induction of ABCA1 expression, which promotes cholesterol clear-
ance and APOE  lipidation17,53. Interestingly, at the single cell level, we identified heterogeneous responses across 
subpopulations of iMGL cells including a prominent response in activated microglia. We found a downregulation 
of inflammatory response pathways, consistent with a previous report that treatment of mouse microglia-derived 
cell line BV2 with GW3965 causes an attenuation of  neuroinflammation63.

Although Commercial iMGL cells show promising potential, they do not completely recapitulate all aspects 
of microglial biology. The transcriptional factor SALL1, an important determinant of microglia  identity64, is not 
expressed in Commercial iMGL cells (Fig. 1E and Supplementary Fig. 4). However, xenotransplant microglia 
exhibit expression of SALL1, indicating that iMGL cells have the potential to turn on the SALL1-mediated 
transcriptional program (Supplementary Fig. 4). Moving forward, optimization of differentiation protocols and 
culture media components as well as further methods development, including direct cell  conversion54, will 
continue to make iMGL cells an attractive model system for therapeutic development in neurodegeneration.

Conclusions
In this study, we performed comprehensive bulk and single cell transcriptional characterization of Commercial 
iMGL cells. We find that Commercial iMGL cells closely resemble ex vivo microglia at the overall transcriptome 
level and express most, but not all, key microglia marker genes. We identified 11 subpopulations of cells repre-
senting homeostatic, activated, and proliferating states, replicating the heterogeneity of ex vivo  microglia30,31. 
Commercial iMGL cells stabilize after 3 days in culture and we treated them with two distinct LXR pathway 
agonists to assess their transcriptional responsiveness. At the bulk level, Commercial iMGL cells respond by 
upregulation of lipid metabolism pathways and downregulation of cell cycle pathways. At the single cell level, the 
transcriptional responses differ between homeostatic and activated microglia. Overall, our results demonstrate 
that Commercial iMGL cells exhibit a basal transcriptional profile, cellular heterogeneity, and transcriptional 
plasticity that is comparable to in vivo microglia.

Data availability
Raw and processed data from bulk and single cell RNA sequencing experiments have been deposited in the NCBI 
Gene Expression Omnibus (GEO) under accession number GSE226081.
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